

Micro CANopen Plus User Manual

For Version 6.30 revision 4007 and higher of Micro CANopen Plus

E M B E D D E D

S Y S T E M S

A C A D E M Y

The Micro CANopen Plus Protocol Stack

2

MICRO CANOPEN PLUS LICENSE AGREEMENT

EMBEDDED SYSTEMS ACADEMY, INC.

For Micro CANopen Plus V6.30

The enclosed software and documentation are the exclusive property of Embedded Systems Academy,

Inc. (ESA), protected under the copyrights laws of the United States of America and under international

treaty provisions. ESA agrees to grant LICENSEE a license to use this copy of Micro CANopen Plus (the

"SOFTWARE") and LICENSEE agrees to pay for this license in accordance to the terms specified.

You should carefully read the following terms and conditions before using the SOFTWARE. Unless you

have a different license agreement signed by ESA your use of the SOFTWARE indicates your acceptance of

this license.

If you do not agree to any of the terms of this License, then do not use this copy of the SOFTWARE.

If the SOFTWARE is used for a project that is rented, leased, sold or otherwise traded (a "COMMERCIAL

PROJECT") then this commercial license is required to use the SOFTWARE. If the SOFTWARE is used to

develop knowledge of CANopen for a COMMERCIAL PROJECT then this commercial license is required.

Installation and Use. You may install and use an unlimited number of copies of the SOFTWARE for a SIN-

GLE PROJECT at a SINGLE SITE within your organization.

Reproduction and Distribution. You may NOT reproduce and distribute copies of the SOFTWARE source

code or parts thereof without written permission of ESA. You may freely reproduce and distribute binary

firmware compiled using the SOFTWARE without limitations.

Third-party access. The SOFTWARE source code may be accessible only to employees within your organi-

zation at the SINGLE SITE that the SOFTWARE is licensed for. Any access from third-party personnel (con-

sultants, temporary workers, clients, customers) or personnel not on site requires the written permission

of ESA.

Limitations for Consultants, Software Houses, Product Development companies and other vendors of

embedded development services: The SOFTWARE is licensed on a per-client basis. The restrictions to

third-party access apply to clients or customers as well.

All title and copyrights in and to the SOFTWARE (including but not limited to any images, photographs,

animations, video, audio, music, text, and "applets" incorporated into the SOFTWARE), any accompanying

printed materials, and any copies of the SOFTWARE are owned by ESA. The SOFTWARE is protected by

copyright laws and international treaty provisions. Therefore, you must treat the SOFTWARE like any

other copyrighted material. All copyright notices, this license, header comments and similar statements

include with this distribution of the SOFTWARE must remain in the source code at all times. No claim must

be made as to the ownership of the SOFTWARE.

THIS SOFTWARE, AND ALL ACCOMPANYING FILES, DATA AND MATERIALS, ARE DISTRIBUTED "AS IS" AND

WITH NO WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED. Good data processing procedure

dictates that any program be thoroughly tested with non-critical data before relying on it. The user must

assume the entire risk of using the program. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSEN-

TIAL PART OF THE AGREEMENT.

IN NO EVENT SHALL ESA, OR ITS PRINCIPALS, SHAREHOLDERS, OFFICERS, EMPLOYEES, AFFILIATES, CON-

TRACTORS, SUBSIDIARIES, OR PARENT ORGANIZATIONS, BE LIABLE FOR ANY INCIDENTAL, CONSEQUEN-

The Micro CANopen Plus Protocol Stack

3

TIAL, OR PUNITIVE DAMAGES WHATSOEVER RELATING TO THE USE OF THE SOFTWARE, OR YOUR RELA-

TIONSHIP WITH ESA.

IN ADDITION, IN NO EVENT DOES ESA AUTHORIZE YOU TO USE THE SOFTWARE IN APPLICATIONS OR SYS-

TEMS WHERE THE SOFTWARE'S FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO RESULT IN A

SIGNIFICANT PHYSICAL INJURY, OR IN LOSS OF LIFE. ANY SUCH USE BY YOU IS ENTIRELY AT YOUR OWN

RISK, AND YOU AGREE TO HOLD ESA HARMLESS FROM ANY CLAIMS OR LOSSES RELATING TO SUCH UN-

AUTHORIZED USE.

This Agreement is the complete statement of the Agreement between the parties on the subject matter,

and merges and supersedes all other or prior understandings, purchase orders, agreements and arrange-

ments. This Agreement shall be governed by the laws of the State of California. Exclusive jurisdiction and

venue for all matters relating to this Agreement shall be in courts and fora located in the State of Califor-

nia, and you consent to such jurisdiction and venue.

All rights of any kind in the SOFTWARE which are not expressly granted in this License are entirely and

exclusively reserved to and by ESA.

The Micro CANopen Plus Protocol Stack

4

The Micro CANopen Plus Protocol Stack

5

 1 Contents
2 The Micro CANopen Protocol Stack 10

2.1 Micro CANopen Manager Add-On 10

2.2 Extended OD and PDO Add-On 10

2.3 CANopen Documentation 10

2.4 File and Directory Structure 11

2.4.1 Common Shared Directory 11

2.4.2 Application Directory 11

2.4.3 Hardware-specific Directory 12

2.4.4 Simulation-specific Directory 13

2.4.5 Common Shared Directory for Micro CANopen Manager (optional) 13

2.4.6 Common Shared Directory for extended OD and PDO features (optional) 13

2.5 Functional Overview 13

2.5.1 Process Image Usage 14

2.5.2 Object Dictionary and SDO Server 14

2.5.3 Heartbeat vs. Node Guarding 14

2.5.4 Micro CANopen PDO Communication Parameters 14

2.5.5 Number of PDOs 14

2.5.6 Emergency Producer and Emergency messages 14

2.5.7 Emergency Consumer 15

2.5.8 Heartbeat Consumer 15

2.5.9 Store Parameters 15

2.5.10 Layer Setting Services 15

2.5.11 SDO Fully-Meshed Communication 15

2.5.12 User Call-Back Functions 16

2.5.13 CiA 401 Generic I/O Example Application 16

2.5.14 Dynamic PDO Mapping Example Application 16

2.5.15 CiA 447 Car Add-On Devices Example Application 16

3 Application Interface 17

3.1 The Process Image 17

3.1.1 Configuration of the Process Image 17

3.1.2 Accessing the Process Image 17

3.1.3 Data Integrity of the Process Image in an RTOS Environment 18

The Micro CANopen Plus Protocol Stack

6

3.2 Object Dictionary Configuration 18

3.3 CANopen API Functions and Macros 18

3.3.1 The MCO_Init function 18

3.3.2 The MCO_InitRPDO function 19

3.3.3 The MCO_InitTPDO function 20

3.3.4 The MCO_InitTPDOFull function 20

3.3.5 The MCO_ProcessStack function 21

3.3.6 The MCO_TriggerTPDO function 22

3.3.7 Process Image Access Macros: The PI_READ macro 22

3.3.8 Process Image Access Macros: The PI_WRITE macro 23

3.3.9 Process Image Access Macros: The PI_COMP macro 23

3.3.10 Default Process Image Access Macros 23

3.3.11 Macros for PDO process image access 24

3.3.12 Legacy, use PI_READ – The MCO_ReadProcessData function 24

3.3.13 Legacy: use PI_WRITE – the MCO_WriteProcessData function 25

3.4 CANopen API System Call-Back Functions 25

3.4.1 The MCOUSER_ResetCommunication function 25

3.4.2 The MCOUSER_ResetApplication function 26

3.4.3 The MCOUSER_GetSerial function 26

3.4.4 The MCOUSER_NMTChange function 26

3.4.5 The MCOUSER_FatalError function 27

3.4.6 The MCOUSER_Sleep function 27

3.5 CANopen API Application Call-Back Functions 27

3.5.1 The MCOUSER_SYNCReceived function 28

3.5.2 The MCOUSER_RPDOReceived function 28

3.5.3 The MCOUSER_ODData function 28

3.5.4 The MCOUSER_TPDOReady function 29

3.6 CANopen API Extended Functions 30

3.6.1 The MCOP_InitHBConsumer function 30

3.6.2 The MCOP_ProcessHBCheck function 30

3.6.3 The MCOP_GetStoredParameters function 30

3.6.4 The MCOP_PushEMCY function 31

3.6.5 The MCOP_TransmitSleepObjection() function 31

The Micro CANopen Plus Protocol Stack

7

3.6.6 CANopen API Extended Callbacks 32

3.6.7 The MCOUSER_AppSDOReadInit function 32

3.6.8 The MCOUSER_AppSDOReadComplete function 32

3.6.9 The MCOUSER_AppSDOWriteInit function 33

3.6.10 The MCOUSER_AppSDOWriteComplete function 33

3.6.11 The MCOUSER_SDORdPI function 34

3.6.12 The MCOUSER_SDORdAft function 34

3.6.13 The MCOUSER_SDOWrPI function 35

3.6.14 The MCOUSER_SDOWrAft function 35

3.7 Dynamic PDO Mapping Functions 36

3.7.1 The XPDO_ResetPDOMapEntry function 36

3.7.2 The XPDO_SetPDOMapEntry function 36

3.7.3 The XPDO_UpdatePDOMapping function 37

3.8 Driver Functions 37

3.8.1 The MCOHW_Init function 37

3.8.2 The MCOHW_SetCANFilter function 38

3.8.3 The MCOHW_GetStatus function 38

3.8.4 The MCOHW_PushMessage function 38

3.8.5 The MCOHW_PullMessage function 38

3.8.6 The MCOHW_GetTime function 39

3.8.7 The MCOHW_IsTimeExpired function 39

3.8.8 The NVOL_Init function (Plus) 39

3.8.9 The NVOL_ReadByte function 40

3.8.10 The NVOL_WriteByte function 40

3.8.11 The NVOL_WriteComplete function 40

3.8.12 The MCOHWMGR_SetCANFilter function (MGR) 40

3.8.13 The MCOHWMGR_PullMessage function (MGR) 41

3.9 Using Software CAN Filters and FIFOs 41

3.9.1 Using Software CAN Receive Filters 41

3.9.2 Using the FIFOs 42

3.9.3 Sample CAN Receive Interrupt Implementation 42

4 CANopen Code Configuration 43

4.1 Default Configuration of nodecfg.h 43

The Micro CANopen Plus Protocol Stack

8

4.1.1 #define ENFORCE_DEFAULT_CONFIGURATION [0|1] 43

4.2 General Settings of nodecfg.h 43

4.2.1 #define USE_MCOP [0|1] 43

4.2.2 #define CHECK_PARAMETERS [0|1] 43

4.2.3 #define USE_LEDS [0|1] 43

4.3 PDO Settings of nodecfg.h 43

4.3.1 #define NR_OF_RPDOS [num] 43

4.3.2 #define NR_OF_TPDOS [num] 44

4.3.3 #define USE_EVENT_TIME [0|1] 44

4.3.4 #define USE_INHIBIT_TIME [0|1] 44

4.3.5 #define USE_SYNC [0|1] 44

4.3.6 #define USE_DYNAMIC_PDO_MAPPING [0|1] 44

4.4 NMT Service Settings of nodecfg.h 44

4.4.1 #define AUTOSTART [0|1] 44

4.4.2 #define DEFAULT_HEARTBEAT [ms] 44

4.4.3 #define DYNAMIC_HEARTBEAT_CONSUMER [0|1], #define NR_HB_CONSUMER [num] 45

4.4.4 #define USE_EMCY [0|1], #define ERROR_FIELD_SIZE [num] 45

4.4.5 #define USE_NODE_GUARDING [0|1] 45

4.4.6 #define USE_STORE_PARAMETERS [0|1], #define NVOL_STORE_START [num], #define

NVOL_STORE_SIZE [num] 45

4.4.7 #define NR_OF_SDOSERVER [num] 45

4.4.8 #define USE_SLEEP [0|1] 46

4.5 Other Settings of nodecfg.h 46

4.5.1 #define USE_CiA447 [0|1] 46

4.5.2 #define USE_SDOMESH [0/1] 46

4.6 User Call-Back Functions of nodecfg.h 46

4.6.1 #define USECB_NMTCHANGE [0|1] 46

4.6.2 #define USECB_SYNCRECEIVE [0|1] 46

4.6.3 #define USECB_RPDORECEIVE [0|1] 46

4.6.4 #define USECB_ODDATARECEIVED [0|1] 46

4.6.5 #define USECB_TPDORDY [0|1] 46

4.6.6 #define USECB_SDOREQ [0|1] 47

4.6.7 #define USECB_SDO_RD_PI [0|1] 47

The Micro CANopen Plus Protocol Stack

9

4.6.8 #define USECB_SDO_RD_AFTER [0|1] 47

4.6.9 #define USECB_SDO_WR_PI [0|1] 47

4.6.10 #define USECB_SDO_WR_AFTER [0|1] 47

4.6.11 #define USECB_APPSDO_READ [0|1] 47

4.6.12 #define USECB_APPSDO_WRITE [0|1] 48

5 SDO Fully-Meshed Communication 49

5.1 Prerequisites 49

5.2 Limitations 49

5.3 SDO Communication Setup 49

5.4 Usage Example (With Manager Add-On) 50

6 Appendix - Using Auto-Generated Sources 52

6.1 File Generation 52

6.2 File Integration 52

6.2.1 pimg.h 52

6.2.2 stackinit.h 52

6.2.3 entriesandreplies.h 53

7 Apendix – Advanced Manual Configuration 54

7.1 RTOS Integration 54

7.1.1 RTOS Task: Receive and Tick 54

7.1.2 Process Image Integrity 54

7.2 Object Dictionary Configuration 54

7.2.1 Constant Expedited Object Dictionary Entries 55

7.2.2 Variable Expedited and Mapped Object Dictionary Entries 56

7.2.3 Generic Object Dictionary Entries 57

The Micro CANopen Plus Protocol Stack

10

 2 The Micro CANopen Protocol Stack
The Micro CANopen protocol stack implements all mandatory functionality of the CiA (CAN in Automation

user’s and manufacturer’s group) standard CiA 301 “CANopen Application Layer and Communication

Profile” version 4.02 and selected functionality of the standard CiA 302 “CANopen Framework for CANo-

pen Managers and Programmable CANopen Devices” version 3.21. The examples included are in accord-

ance to the standard CiA 401 “CANopen Device Profile for Generic I/O Modules” version 2.1.

The CiA447 version provides examples for the implementation of car add-on devices according to CiA447

version 2.0 and includes the Manager functionality.

Examples implementations for other Device or Application Profiles are available upon request.

2.1 Micro CANopen Manager Add-On
Advanced CANopen Manager functionality as defined in CiA 302 “CANopen Framework for CANopen

Managers and Programmable CANopen Devices” is available as an add-on package to Micro CANopen

Plus. This includes SDO client functionality. This add-on is included in the CiA447 version of Micro CANo-

pen. For details see the Micro CANopen Manager User Manual or www.CANopenStore.com.

2.2 Extended OD and PDO Add-On
Advanced Object Dictionary (OD) access and PDO mapping is available as an add-on package to Micro

CANopen Plus. This add-on implements Dynamic PDO Mapping (change of mapping/contents during run-

time), multi-mapping (one Object Dictionary Entry mapped to multiple PDOs) and extended access to OD

entries to implement dynamic ODs that can change during run time.

2.3 CANopen Documentation
It is assumed that programmers using Micro CANopen have a general understanding about how CANopen

works. In addition they should either have access to the CANopen specification or a CANopen book such

as “Embedded Networking with CAN and CANopen” (www.CANopenBook.com). The Micro CANopen

manual does not explain regular CANopen features, functions and terms.

The Micro CANopen Plus Protocol Stack

11

2.4 File and Directory Structure
The directory structure used by Micro CANopen separates the files used into four major groups. It is rec-

ommended to maintain this structure and to adopt it for the grouping of source files in the project set-

tings and layouts as supported by most compiler systems.

2.4.1 Common Shared Directory

Path: MCO/

This directory contains all files implementing the core features of the CANopen protocol. In order to allow

easy future updates/upgrades and to ensure that the code remains CANopen conformant, these files

should not be modified by the end user.

File / Module Content

mcop_inc.h Central include file, includes all needed .h files

mcohw.h CAN driver interface definition

mco.h
mco.c

Micro CANopen core module

mcop.h
mcop.c

Generic Micro CANopen Plus extensions of Micro CANopen

storpara.c Micro CANopen Plus extension: support of the Store Parameters func-
tions storing configuration data in non-volatile memory

xsdo.h
xsdo.c

Micro CANopen Plus extension: segmented SDO transfers
(Supporting Object Dictionary entries that are > 4 bytes)

lss.h
lssslv.c

Micro CANopen Plus extension: Layer Setting Services, slave implemen-
tation, also supports LSS FastScan

canfifo.h
canfifo.c

Implementation of CAN software filtering and transmit and receive FIFOs

2.4.2 Application Directory

Path: MCO_[application name]__User/

Example: MCO_CiA401__User/

This directory contains the files and modules configuring the CANopen device implemented. These files
need to be modified or generated for each particular application.

File / Module Content

procimg.h Definition of process image access macros

nodecfg.h Micro CANopen functionality configuration

user_cbdata.c Application call-back functions

user_OD.c Tables with Object Dictionary (also pulls-in auto-generated entries from
CANopen Architect)

Path: MCO_[application name]__User/EDS/

Example: MCO_CiA401__User/EDS/

The Micro CANopen Plus Protocol Stack

12

This directory contains the application’s EDS and DCF files (Electronic Data Sheet and Device Configuration

File) as well as auto-generated source code files generated by the CANopen Editor “CANopen Architect”.

The auto-generated files should not be modified as any recreation of the files by CANopen Architect

would overwrite any local modifications.

2.4.3 Hardware-specific Directory

Path: MCO_[application name]_[target name]/

Example: MCO_CiA401_LPC1768/

This directory contains the files and modules specific to a microcontroller or other implementation hard-

ware, including project files for select development environments.

File / Module Content

mco_types.h CANopen data type definition

mcohw_cfg.h Hardware configuration, driver options

mcohw_LEDs.h Macros to access a CANopen running and error LED

mcohw_[target name].c CAN driver implementation

mcohw_nvol_xxx.c If STORE PARAMETERS functionality is used, access to NVOL
memory is needed; implemented here.

user_[target name].c
main_[target name].c

Implementation of main functionality and system level call back
functions

File / Module Content

Application.eds Application’s Electronic Data Sheet

Application.dcf Application’s Device Configuration File. This is for a specific node ID
and is the file used as a basis to the auto-generated files below.

entriesandreplies.h
stackinit.h
pimg.h

Auto-generated configuration files generated by “CANopen Architect”
using the Device Configuration File above.

The Micro CANopen Plus Protocol Stack

13

2.4.4 Simulation-specific Directory

Path: MCO_simulator/

This directory contains the source files that are required when compiling Micro CANopen into a DLL for

the CANopen Magic Ultimate simulation environment.

2.4.5 Common Shared Directory for Micro CANopen Manager (optional)

Path: MGR/

This directory contains all files implementing CANopen Manager and SDO client functionality. This is only

included in the delivery if the manager add-on option is ordered or the CiA447 car add-on devices version

of the code.

File / Module Content

mcop_mgr_inc.h Central include file to include files needed for manager

sdoclnt.h
sdoclnt.c

Implements the SDO client functionality

comgr.h
comgr.c

Implements the main functionality of a Manager

lssmgr.h
lssmgr.c

LSS Master implementation

mlssmgr.h
mlssmgr.c

Micro LSS Master implementation with LSS Fast Scan

concisedcf.h
concisedcf.c

Support for concise DCF

2.4.6 Common Shared Directory for extended OD and PDO features (optional)

Path: XOD/

This directory contains all files implementing extended OD access including dynamic PDO Mapping and

PDO multi-mapping. This allows changing the mapping (contents) of a PDO during run-time or to map one

Object Dictionary entry to multiple PDOs.

File / Module Content

mcop_xod_inc.h Central include file, includes everything needed

xod.c Implementation of extended OD access

xpdo.h
xpdo.c

Implements the basic functionality of a manager

raccess.c/.h
raserial.c/.h

Remote Access functionality

2.5 Functional Overview
Micro CANopen can be used to implement CANopen Slave nodes in accordance with almost any Device or

Application profile available today. Micro CANopen Plus covers the advanced functionality most often

used in CANopen slave nodes.

The Micro CANopen Plus Protocol Stack

14

2.5.1 Process Image Usage

All data communicated via CANopen is organized in a process image, an array of bytes (type UNSIGNED8).

Data is referred to by an offset into the process image. These offsets can be auto-generated by the CANo-

pen configuration tool CANopen Architect.

2.5.2 Object Dictionary and SDO Server

Micro CANopen Plus implements an object dictionary with one or multiple SDO servers. In basic configu-

ration, the SDO server is limited to expedited SDO transfers. This means that no single variable stored in

the Object Dictionary can exceed 4 bytes. Longer variables must be divided into multiple 4-byte values. In

addition, Micro CANopen Plus can be configured to support segmented SDO transfers as well as SDO block

transfer, allowing access to Object Dictionary entries longer than 4 bytes.

Using the SDO server, one Manager or configuration tool can send read/write requests to the Object Dic-

tionary.

2.5.3 Heartbeat vs. Node Guarding

As recommended by the CiA and other CANopen experts, Micro CANopen implements the newer heart-

beat method instead of the older node guarding method. However, in order to better work with legacy

devices (including the CANopen conformance test), Micro CANopen Plus also has a very basic version of

node guarding implemented. Note that this needs support of the underlying CAN driver to receive RTR

frames. This may not be readily available in every supported architecture or not even possible with every

CAN controller.

2.5.4 Micro CANopen PDO Communication Parameters

In Micro CANopen Plus, PDO parameters may be static (hard-coded, not changeable during operation) or

dynamic (changed during operation), depending on configuration. PDO trigger options include change-of-

state with an inhibit time, event timer (periodical) and SYNC.

2.5.5 Number of PDOs

The maximum number of PDOs supported are 512 TPDOs and 512 RPDOs for Micro CANopen Plus. This

limit is not a Micro CANopen limit, but the limit as specified by the CANopen standard.

2.5.6 Emergency Producer and Emergency messages

Micro CANopen Plus supports the production of emergency messages. Emergencies can be triggered by

the application as well as by the CANopen stack, for example if a PDO received has a different length than

expected.

Upon startup (right after boot up message) an Emergency clear message (code 0000h) is transmitted.

Further, the default implementation of the user function MCOUSER_FatalError() generates an Emergency

with the error code in the custom area of the Emergency message.

The Micro CANopen Plus Protocol Stack

15

If an illegal NMT command (CAN message ID zero) is received, an Emergency with code 8200h is pro-

duced. The custom error area shows the illegal command byte received.

If a PDO received has a different length as expected, an Emergency with code 8210h is produced. The

custom error area included the PDO number (lo byte and hi byte), the expected length and the length of

the received PDO.

If Heartbeat consumption is enabled and a loss of a heartbeat is detected, then an Emergency with code

8130h is produced. The custom area shows the node ID number of the node whose heartbeat was lost.

2.5.7 Emergency Consumer

Micro CANopen Plus supports the consuming of emergency messages with the manager add-on package.

When used, all 127 emergencies can be received and trigger a call-back function to the application.

2.5.8 Heartbeat Consumer

Micro CANopen Plus provides multiple heartbeat consumer channels. The application is informed once a

heartbeat monitored is lost. The channels can be configured both through the CANopen network as well

as by the application. So if the application knows which heartbeats it should listen to, then that infor-

mation can be directly used without waiting for a configuration through the network.

2.5.9 Store Parameters

Micro CANopen Plus implements the store parameters functionality. This means that the current configu-

ration of the Micro CANopen device can be saved to non-volatile memory and will automatically be used

after power-up.

2.5.10 Layer Setting Services

Using the layer setting services, Micro CANopen Plus based nodes can change their node ID and or the bit

rate settings during operation. An LSS Master is required in the CANopen network to use this functionali-

ty.

Since version 4.00, Micro CANopen Plus supports MicroLSS, the LSS Fast Scan service that auto-identifies

non-configured nodes on the network with much better performance and reliability than legacy LSS.

2.5.11 SDO Fully-Meshed Communication

For small networks of up to 16 nodes, Micro CANopen Plus features a built-in configuration that allows

any node to access all of the object dictionary of another node at any time without restrictions. This is

done by enabling 16 SDO server channels and 16 SDO clients in each node and setting the channels up

using a custom COB-ID assignment scheme.

The Micro CANopen Plus Protocol Stack

16

2.5.12 User Call-Back Functions

Micro CANopen provides call-back functions for the resets and for fatal errors. The communication reset

function is typically used to initialize the entire CANopen stack.

Micro CANopen Plus provides optional call-back functions for changes in the NMT Slave state machine

and for handling unknown SDO requests to the Object Dictionary. The later can be used to implement

very application specific Object Dictionary entries.

All process image data accesses are made using macros. If such accesses need to be protected / locked

from each other, then the macros can be used to include such locking calls.

2.5.13 CiA 401 Generic I/O Example Application

The example code supplied with Micro CANopen implements a minimal CiA 401 compliant device with 4

digital input bytes, 4 digital output bytes, 2 analog input words and 2 analog output words. The process

data is transmitted using 2 Transmit PDOs and 2 Receive PDOs.

The output data send to the application is directly echoed back as input data. Values send to RPDO1 are

echoed back on TPDO1, values send to RPDO2 are echoed back on TPDO2.

2.5.14 Dynamic PDO Mapping Example Application

The example code provided with the add-on for support of dynamic PDO mapping implements a total of

16 PDOs. The 8 receive and transmit PDOs can be reconfigured individually via the network (using a CAN-

open configuration tool) or by the application. The application modifies a PDO's mapping right after ini-

tialization in main().

2.5.15 CiA 447 Car Add-On Devices Example Application

The example code supplied with Micro CANopen Plus for CiA 447 implements several examples for car

add-on devices. The devices come up non-configured and wait for the gateway to detect and configure

them using the MicroLSS/Fast Scan detection cycle.

To manually configure the nodes and have them auto-start with a fixed node ID one needs to disable the

MicroLSS service in nodecfg.h. In that file simply comment-out the defines for USE_LSS_SLAVE and

USE_MICROLSS.

With this change, the node ID is set indirectly from the DCF configuration. To change, edit the node ID in

the DCF for the application (stored in xxx_EDS directory) using Code Architect and recreate the source

files from there.

The Micro CANopen Plus Protocol Stack

17

 3 Application Interface
Both shared data memory and function calls are used to implement an interface between Micro CANopen

the application program. A process image (array of bytes) is used as shared memory that can be accessed

from both Micro CANopen as well as from the application program. The process image contains all pro-

cess data variables that are communicated via CANopen. Access functions are provided to allow the appli-

cation program to read or write data from or to the process image.

3.1 The Process Image
In order to offer a generic method for addressing and exchanging the data communicated via CANopen,

the data is organized into a process image which is implemented as an array of bytes. The length of the

process image in bytes is defined by PROCIMG_SIZE in file procimg.h and must be in the range of 1 to

FFFEh (values 0 and FFFFh are reserved).

A single variable of the process image can be addressed by specifying an offset and a length. The offset

specifies where in the process image the first byte of a variable is stored and the length specifies how

many bytes are used to store the variable. The offset may have a value from 0 to FFFEh. Using an offset of

FFFFh indicates that the offset is invalid or unused.

If numeric values are stored in multiple byte variables, then the default byte order is CANopen compati-

ble: Little Endian – the lower bytes are stored at the lower offset.

3.1.1 Configuration of the Process Image

Since version 2.6 of Micro CANopen, the process image configuration can be automatically generated by

CANopen Architect. The default file name for the file containing the process image variable definitions

generated by CANopen Architect is pimg.h.

Where exactly each variable is located in the process image is part of the CANopen node configuration

process that needs to be done by the designer/programmer of the CANopen node. The CANopen configu-

ration process also includes assigning an Object Dictionary Index and Subindex to each variable and to

configure the PDOs (Process Data Objects) containing one or multiple process data variables.

To simplify accessing the process image and to allow for easy re-configuration of process images, it is

recommended to use #define statements to define the offsets to the individual variables in the process

image. These should be defined in the file procimg.h that can be included to all code modules requiring

access to the process image.

In Micro CANopen it MUST be ensured that all variables mapped into a single PDO (one CAN message) are

located consecutively in the process image. The entire payload of a PDOs is copied from/to the process

image in one go.

NOTE: This is NOT required when the dynamic PDO mapping add-on is used.

3.1.2 Accessing the Process Image

Any application program may directly access the data in the process image (for example: gProcImg[offset]

= x).

The Micro CANopen Plus Protocol Stack

18

For a more generic access it is recommended to use the access functions and macros provided by Micro

CANopen. See chapter 3.3.7 Process Image Access Macros: The PI_READ macro and below for details.

3.1.3 Data Integrity of the Process Image in an RTOS Environment

The process image is accessed by both the application and Micro CANopen (both with SDO and PDO ac-

cesses). If the Micro CANopen stack and the application cannot interrupt each other, then process image

integrity is ensured and no further protection is required. This is true if both the application is running

from a polling loop, such as in a main while(1) loop.

If Micro CANopen is used in a multitask implementation, it needs to be ensured that accesses to the pro-

cess image are not made “simultaneously” from multiple tasks. A mutex or single token semaphore

should be used that only one instance can access the process image at any given time.

To ease the implementation of such locks, all process image accesses need to be made using the macros

PI_READ(), PI_WRITE() and PI_COMP(). The read and write macros need to be enhanced with custom code

to create and release a lock before and after accessing the process image. These are defined in file

procimg.h.

Note: PI_COMP() also executes an read access, however it is only used to detect a data change and there-

fore does not need to be protected.

3.2 Object Dictionary Configuration
Starting with version 2.6 of Micro CANopen, the Object Dictionary configuration can be automatically

generated by CANopen Architect. The default file name for the file containing the process image variable

definitions is entriesandreplies.h.

In Micro CANopen the default configuration is setup via tables typically implemented in a file called

user_xxx.c (User Object Dictionary file).

For more details about the manual, advanced configuration of these tables see chapter 7.2 Object Dic-

tionary Configuration.

3.3 CANopen API Functions and Macros
This section lists all the functions that can be called by the application program.

3.3.1 The MCO_Init function

The MCO_Init function (re-)initializes the CANopen protocol stack. It needs to be called during system

initialization. It may also be called to re-initialize the CANopen stack, for example to force a reset of the

CANopen communication task(s).

Declaration

void MCO_Init (

 UNSIGNED16 Baudrate, // CAN baudrate in kbit

 UNSIGNED8 Node_ID, // CANopen node ID (1 - 126)

 UNSIGNED16 Heartbeat // Heartbeat time in ms

);

The Micro CANopen Plus Protocol Stack

19

Passed

Baudr ate selects the desired CAN bit rate to be used. The following values are typically used for CANo-

pen:

1 use default or predefined bit rate
10 use 10 kbps
20 use 20 kbps
50 use 50 kbps
125 use 125 kbps
250 use 250 kbps
500 use 500 kbps
800 use 800 kbps
1000 use 1,000 kbps

Node_ID is the CANopen node ID to be used by this CANopen node. The allowed value range is 0 to 127.

If 0 is selected, Micro CANopen will use the default or preconfigured node ID.

Heartbeat is the heartbeat producer time in milliseconds. If set to zero, Micro CANopen will try to use

a default or predefined value.

Returned

Nothing.

3.3.2 The MCO_InitRPDO function

This function initializes a Receive Process Data Object.

When using the code generation of CANopen Architect these calls are automatically generated and pro-

vided in file initpdos.h.

Declaration

void MCO_InitRPDO (

 UNSIGNED16 PDO_NR, // RPDO number (starting at 1)

 UNSIGNED16 CAN_ID, // CAN identifier (0 for default)

 UNSIGNED8 len, // Number of data bytes in RPDO

 UNSIGNED8 offs et // Offset to data in process image

)

Passed

The parameter PDO_NR defines the PDO number as used in CANopen. The default PDOs of a CANopen

device are numbered 1 through 4.

The CAN_ID specifies the CAN message identifier used for this PDO. If left at zero the CANopen default is

used.

The len parameter defines the number of data bytes in the PDO.

The parameter offset defines the location of the PDO data within the process image.

Returned

Nothing.

The Micro CANopen Plus Protocol Stack

20

3.3.3 The MCO_InitTPDO function

This function initializes a Transmit Process Data Object.

This function is provided for legacy purposes and the more complete function MCO_InitTPDOFull () should

be used instead.

Declaration

void MCO_Init TPDO (

 UNSIGNED16 PDO_NR, // TPDO number (starting at 1)

 UNSIGNED16 CAN_ID, // CAN ID to use (0 for default)

 UNSIGNED16 event_time, // Send every event_time ms

 UNSIGNED16 inhibit_time, // Inhibit time in ms

 // (set to 0 if ONLY event_time should be used)

 UNSIGNED8 len, // Number of data bytes in TPDO

 UNSIGNED8 offset // Offset to data in process image

)

Passed

The parameter PDO_NR defines the PDO number as used in CANopen. The default PDOs of a CANopen

device are numbered 1 through 4.

The CAN_ID specifies the CAN message identifier used for this PDO. If left at zero the CANopen default is

used.

The event_time defines how often this PDO is transmitted. This message is sent every event_time

milliseconds.

The inhibit_time activates change-of-state transmission (transmission when data to be transmitted

actually changed) and defines the minimum delay before a message can be transmitted again. Even if the

state changes, the message is not re-transmit before inhibit_time expires.

The len parameter defines the number of data bytes in the PDO.

The parameter offset defines the location of the PDO data within the process image.

Returned

Nothing.

3.3.4 The MCO_InitTPDOFull function

This function initializes a Transmit Process Data Object, including its transmission type.

When using the code generation of CANopen Architect these calls are automatically generated and pro-

vided in file initpdos.h.

Declaration

void MCO_Init TPDOFull (

 UNSIGNED16 PDO_NR, // TPDO number (starting at 1)

 UNSIGNED16 CAN_ID, // CAN ID to use (0 for default)

 UNSIGNED16 event_time, // Send every event_time ms

 UNSIGNED16 inhibit_time, // Inhibit time in ms

 // (set to 0 if ONLY event_time should be used)

 UNSIGNED8 trans_type, // Transmission type of the TPDO

 UNSIGNED8 len, // Number of data bytes in TPDO

The Micro CANopen Plus Protocol Stack

21

 UNSIGNED8 offset // Offset to data in process image

)

Passed

The parameter PDO_NR defines the PDO number as used in CANopen. The default PDOs of a CANopen

device are numbered 1 through 4.

The CAN_ID specifies the CAN message identifier used for this PDO. If left at zero the CANopen default is

used.

The event_time defines how often this PDO is transmitted. This message is sent every event_time

milliseconds.

The inhibit_time activates change-of-state transmission (transmission when data to be transmitted

actually changed) and defines the minimum delay before a message can be transmitted again. Even if the

state changes, the message is not re-transmit before inhibit_time expires.

The trans_type sets the TPDO transmission type (triggering) according to CiA 301. Supported types

are:

255, 254: Change-of-state

1-253: SYNC trigger (every ‘n’ SYNCs, with n = 1-253)

0: SYNC plus change-of-state

The len parameter defines the number of data bytes in the PDO.

The parameter offset defines the location of the PDO data within the process image.

Returned

Nothing.

3.3.5 The MCO_ProcessStack function

This function must be called periodically to keep the CANopen stack operating. With each call it is checked

if the CAN receive queue contains a message that needs to be processed. Depending on configuration it is

also checked if timers expired or process data changed. This is typically called from the main while(1)

loop. For best operation this should be called at least once per millisecond. If called less often multiple

calls should be executed (see return value below).

Declaration

UNSIGNED8 MCO_ProcessStack (

 void

);

Passed

Nothing.

Returned

The Micro CANopen Plus Protocol Stack

22

The return value is TRUE, if something was processed and FALSE if there was nothing to do. If called less

frequent, like every few milliseconds this function should be called repeatedly until the return value is

FALSE.

Example

 whil e (MCO_ProcessStack() == TRUE);

3.3.6 The MCO_TriggerTPDO function

This function may be called by the application when a TPDO should be transmitted. Can be called after a

write to the process image to avoid lengthy auto-detection of a COS (Change Of State).

Declaration

void MCO_TriggerTPDO (

 UNSIGNED16 TPDONr // TPDO number to transmit

);

Passed

The parameter TPDONr defines the TPDO number to be triggered. Must be in range from 1 to

NR_OF_TPDOS

Returned

Nothing.

3.3.7 Process Image Access Macros: The PI_READ macro

This macro is defined in procimg.h and used to execute read accesses from the process image. This can be

customized or provided as a function if the application wants to have a direct call-back for any read access

made from the process image.

Declaration

PI_READ(level,offset,pdst,len)

Passed

level indicates a priority level for the access, is set to PIACC_APP, PIACC_PDO or PIACC_SDO depending

on if the access is made from the application, PDO processing or SDO processing.

offset is the offset into the process image to the location from which the read is executed.

pdst is a memory pointer to the destination to which data is copied.

len is the length of the data to be copied in bytes.

Returned

Nothing or length of data copied.

The Micro CANopen Plus Protocol Stack

23

3.3.8 Process Image Access Macros: The PI_WRITE macro

This macro is defined in procimg.h and used to execute write accesses to the process image. This can be

customized or provided as a function if the application wants to have a direct call-back for any write ac-

cess made to the process image.

Declaration

PI_WRITE(level,offset,psrc,len)

Passed

level indicates a priority level for the access, is set to PIACC_APP, PIACC_PDO or PIACC_SDO depending

on if the access is made from the application, PDO processing or SDO processing.

offset is the offset into the process image to the location to which the write is executed.

psrc is a memory pointer to the source from which data is copied.

len is the length of the data to be copied in bytes.

Returned

Nothing or length of data copied.

3.3.9 Process Image Access Macros: The PI_COMP macro

This macro is defined in procimg.h and used to compare data with data in the process image. This can be

customized or provided as a function if the application wants to have a direct call-back for any compare

access made to the process image.

Declaration

PI_COMP(level,offset,psrc,len)

Passed

level indicates a priority level for the access, is set to PIACC_APP, PIACC_PDO or PIACC_SDO depending

on if the access is made from the application, PDO processing or SDO processing.

offset is the offset into the process image to the location that is to be compared.

psrc is a memory pointer to the data that is to be compared.

len is the length of the data to be compared in bytes.

Returned

0 if the data is identical and unequal 0 otherwise.

3.3.10 Default Process Image Access Macros

The code is delivered with default macros that use plain calls to memcpy resp. memcmp from the ANSI-C

string library:

#define PI_READ(level,offset,pdst,len) memcpy(pdst,&(gProcImg [offset]),len)

#define PI_WRITE(level,offset,psrc,len) memcpy(&(gProcImg[offset]),psrc,len)

The Micro CANopen Plus Protocol Stack

24

#define PI_COMP(level,offset,psrc,len) memcmp(&(gProcImg[offset]),psrc,len)

In environments where the following is true, these will work fine:

¶ No RTOS is used

¶ The process image is not accessed from within interrupt service routines

3.3.11 Macros for PDO process image access

For all PDO-related accesses, Micro CANopen Plus uses dedicated macros:

PDO_TXCOPY(TPDO,dat)

Copy from process image to TPDO CAN message buffer

PDO_RXCOPY(TPDO,dat)

Copy from RPDO CAN message buffer to process image

PDO_TXCOMP(TPDO,dat)

Compare TPDO CAN message buffer with what is in the process image (for change-of-state detection)

These macros are defined using PI_READ, PI_WRITE and PI_COMP general access macros with PIACC_PDO

as the first parameter for the access level.

3.3.12 Legacy, use PI_READ – The MCO_ReadProcessData function

This function can be used to read data from the process image.

Declaration

UNSIGNED8 MCO_ReadProcessData (

 UNSIGNED8 *pDest, // Destination pointer

 UNSIGNED8 length, // Number of bytes to copy

 UNSIGNED8 offset // Offset of source data in process

 image

);

Passed

The pointer pDest is a destination pointer to the location to which the requested process data should be

copied. The caller must ensure that the buffer at the destination locations is large enough to hold the

number of data bytes requested.

The parameter length defines the number of data bytes requested.

The offset defines the location of the requested data within the process image. If set to zero, the data

is located at the first byte of the process image.

Returned

The number of bytes actually copied to the destination buffer is returned. If zero, no data was copied

because the requested offset was out of range.

Notes

The function makes use of the PI_READ macro (see chapter 3.3.7).

The Micro CANopen Plus Protocol Stack

25

3.3.13 Legacy: use PI_WRITE – the MCO_WriteProcessData function

This function is used to write data to the process image.

Declaration

UNSIGNED8 MCO_WriteProcessData (

 UNSIGNED8 offset, // Offset, destination in process image

 UNSIGNED8 length, // Number of bytes to copy

 UNSIGNED8 *pSrc // Source pointer

);

Passed

The parameter offset defines the location of the target data within the process image. If set to zero,

the data is located at the first byte of the process image.

The length defines the number of data bytes to be copied.

The pointer pSrc is a source pointer to the location from which the process data should be copied.

Returned

The number of bytes actually copied to the process image is returned. If zero, no data was copied because

the requested offset was out of range.

Notes

The function makes use of the PI_WRITE macro (see chapter 3.3.8).

3.4 CANopen API System Call-Back Functions
This section lists system level call-back functions that can be called by the CANopen protocol stack. They

indicate important CANopen system events to the application.

3.4.1 The MCOUSER_ResetCommunication function

This function is called to completely re-initialize the CANopen communication. This includes re-

initialization of the CAN interface. This function is called upon initialization but also when the CANopen

node received the NMT Master command to soft-reset itself.

Declaration

vo id MCOUSER_ResetCommunication (

 void

);

Passed

Nothing.

Returned

Nothing.

The Micro CANopen Plus Protocol Stack

26

3.4.2 The MCOUSER_ResetApplication function

This function is called when the CANopen node received the command from the NMT Master to hard-

reset itself. Both the CANopen communication as well as the application is expected to fully reset. This is

typically implemented using a watchdog reset.

Declaration

void MCOUSER_ResetApplication (

 void

);

Passed

Nothing.

Returned

Nothing.

3.4.3 The MCOUSER_GetSerial function

This function is called before read accesses to the Object Dictionary entry [1018h,0] – Serial Number. It

can be used by the application to retrieve the serial number, for example from non-volatile memory.

Declaration

UNSIGNED32 MCOUSER_GetSerial (

 void

);

Passed

Nothing.

Returned

The 32-bit serial number of the device.

3.4.4 The MCOUSER_NMTChange function

This Micro CANopen Plus function only exists if the compiler directive USECB_NMTCHANGE is defined. It is

then called whenever the CANopen protocol stack changes the NMT Slave state – typically this happens

after receiving the NMT Master Message.

Declaration

void MCOUSER_NMTChange (

 UNSIGNED8 NMTState

);

Passed

The value for NMTSTATE indicates the current NMT Slave State. It can be one of the following values:

NMTSTATE_BOOT (0), NMTSTATE_STOP (4), NMTSTATE_OP (5) or NMTSTATE_PREOP (127).

00h Initializing (sent after receiving the ‘I’ command)

The Micro CANopen Plus Protocol Stack

27

04h CANopen NMT state “stopped” entered
05h CANopen NMT state “operational” entered
7Fh CANopen NMT state “pre-operational” entered

Returned

Nothing.

3.4.5 The MCOUSER_FatalError function

This indication signals the application that the CANopen stack ran into a fatal error situation and needs to

be reset or re-initialized to start operation again.

Declaration

void MCOUSER_FatalError (

 UNSIGNED16 ErrCode // the error code

);

Passed

The ErrCode is an internal 16-bit error code. As a general rule, error codes below 8000h indicate a

warning and the stack CANopen could still continue operation. However, an error code of 8000h or higher

indicates a fatal error requiring re-initialization or a reset of the system.

Returned

Nothing.

3.4.6 The MCOUSER_Sleep function

This function is called when a sleep request (as originally specified in CiA447) was received

Declaration

void MCOUSER_Sleep (

 UNSIGNED8 node, // node ID of the node who sent msg

 UNSIGNED8 command, // command byte of the message

 UNSIGNED8 reason // reason byte of the message

);

Passed

The node id of the message who transmitted the request (zero if node ID unknown), the sleep command

and the sleep reason.

Returned

Nothing.

3.5 CANopen API Application Call-Back Functions
This section lists application level call-back functions that can be called by the CANopen protocol stack.

They indicate CANopen events of relevance to the application.

The Micro CANopen Plus Protocol Stack

28

3.5.1 The MCOUSER_SYNCReceived function

This Micro CANopen Plus function is only available when the compiler directive USECB_SYNCRECEIVE is

defined. The function signals the receipt of the CANopen SYNC message. Synchronous TPDO data trans-

mission will be triggered and synchronous RPDO will be received after execution of this call-back function.

Declaration

void MCOUSER_SYNCReceived (

 void

);

Passed

Nothing.

Returned

Nothing.

3.5.2 The MCOUSER_RPDOReceived function

This Micro CANopen Plus function is only available when the compiler directive USECB_RPDORECEIVE is

defined. The function signals the receipt of a Receive Process Data Object.

Declaration

void MCOUSER_RPDOReceived (

 UNSIGNED8 RPDONr, // RPDO Number

 UNSIGNED8 *pRPDO, // Pointer to RPDO data

 UNSIGNED8 len // Length of RPDO

);

Passed

The parameters passed include the number of the RPDO (starting at 1), a pointer to the RPDO data (loca-

tion in process image) and the number of bytes that were received with the RPDO.

Returned

Nothing.

Notes

For a synchronous (SYNC triggered) RPDO, this function is called after the SYNC has been received.

3.5.3 The MCOUSER_ODData function

This Micro CANopen Plus function is only available when the compiler directive USECB_ODDATARECEIVED

is set to one. The function signals the receipt of process data stored into the process image, no matter if it

came in by PDO or SDO transfer.

Declaration

void MCOUSER_ODData (

 UNSIGNED16 idx,

The Micro CANopen Plus Protocol Stack

29

 UNSIGNED8 subidx,

 UNSIGNED8 *pDat,

 UNSIGNED8 len

);

Passed

The parameters passed include the Index and Subindex of the data received into the Object Dictionary as

well as a pointer to the data and the length of the data in bytes.

Returned

Nothing.

3.5.4 The MCOUSER_TPDOReady function

This Micro CANopen Plus function is only available when the compiler directive USECB_TPDORDY is de-

fined. The stack calls the function right before it sends a TPDO. In case the trigger was not under the ap-

plication's control, such as in case of an expired event timer or a received SYNC, this function is called

before the stack retrieves the TPDO-mapped data entries from the process image. This allows the applica-

tion to update the TPDO data before it is sent, if necessary. The return status allows to suppress a TPDO

transmission.

Declaration

UNSIGNED8 MCOUSER_TPDOReady (

 UNSIGNED16 TPDONr, // TPDO Number

 UNSIGNED8 TPDOTrigger // Trigger for this TPDO's

 // transmission:

 // 0: Event Timer

 // 1: SYNC

 // 2: SYNC+CO S

 // 3: COS or application trigger

);

Passed

The parameters include the number of the TPDO (starting at 1) and the trigger that caused the TPDO to be

sent.

Returned

TRUE if the TPDO is to be transmitted, FALSE if it is to be suppressed. This allows for application or Device

Profile specific TPDO triggers to be implemented.

Notes

Updating the TPDO-mapped data in the process image won't have any effect for TPDOs that were trig-

gered because of change-of-state detection or manually from the application. In these cases the TPDO will

be sent with the data that was in the process image before the call-back function. Further processing will

use the updated data, however.

The Micro CANopen Plus Protocol Stack

30

3.6 CANopen API Extended Functions
This section lists all functions considered extended functionality, only available in the Plus version of Mi-

cro CANopen. They typically require that certain define values are set to enable the functionality request-

ed.

3.6.1 The MCOP_InitHBConsumer function

When heartbeat consumer functionality is enabled, this function can be used to manually re-initialize a

heartbeat consumer.

NOTE that under regular CANopen configuration the heartbeat consumers are initialized through configu-

ration – setting the heartbeat consumer times using a CANopen configuration tool.

Declaration

void MCOP_InitHBConsumer (

 UNSIGNED8 consumer_channel, // HB Consumer channel

 UNSIGNED8 node_id, // Node ID to monitor

 UNSIGNED16 hb_time // Timeout to use (in ms)

);

Passed

consumer_channel is the number of the heartbeat consumer channel that gets initialized with this

call.

node_id is the CANopen node ID of the node monitored.

hb_time is the heartbeat timeout used in milliseconds. As a rule over thumb this should be a multiple of

what the heartbeat producer timer is.

Returned

Nothing.

3.6.2 The MCOP_ProcessHBCheck function

Legacy function, do not use from application!

Use the call-back function MCOUSER_HeartbeatLost() to detect if the heartbeat for a specific node was

lost.

3.6.3 The MCOP_GetStoredParameters function

When the Store Parameters functionality is enabled, this function checks if the non-volatile memory

memory contains any stored data. If it does, it retrieves the data and applies it. This function may only be

called after Micro CANopen and all PDOs have been initialized.

Declaration

void MCOSP_GetStoredParameters (

 void

);

The Micro CANopen Plus Protocol Stack

31

Passed

Nothing.

Returned

Nothing.

3.6.4 The MCOP_PushEMCY function

When Emergency usage is enabled (#define USE_EMCY) functionality is enabled, a CANopen Emergency

message can be transmitted with this function call.

Declaration

UNSIGNED8 MCOP_PushEMCY

 (

 UNSIGNED16 emcy_code, // 16 bit error code

 UNSIGNED8 em_1, // 5 byte manufacturer

 UNSIGNED8 em_2, // specific error code

 UNSIGNED8 em_3,

 UNSIGNED8 em_4,

 UNSIGNED8 em_5

);

Passed

The 16-bit emergency error code as specified by the CANopen standards.

Up to five bytes of manufacturer specific emergency / error information.

Returned

True if the message was successfully added to the transmit queue.

3.6.5 The MCOP_TransmitSleepObjection() function

When sleep mode usage is enabled (#define USE_SLEEP), this function can be called to transmit the sleep

objection message. It should only be called when a sleep request was received by MCOUSER_Sleep() .

Declaration

void MCOP_TransmitSleepObjection

 (void

);

Passed

Nothing.

Returned

Nothing.

The Micro CANopen Plus Protocol Stack

32

3.6.6 CANopen API Extended Callbacks

This section lists all functions considered extended call-back functionality. They typically require that cer-

tain define values are set to enable the functionality requested.

3.6.7 The MCOUSER_AppSDOReadInit function

This Micro CANopen Plus function is only available when the compiler directive USECB_APPSDO_READ is

defined. The function can be used to implement custom Object Dictionary read entries of any length. Data

is transferred in segmented or block mode if activated.

Declaration

UNSIGNED8 MCOUSER_AppSDOReadInit (

 UNSIGNED8 sdoserver, // SDO server number

 UNSIGNED16 idx, // Index of OD entry

 UNSIGNED8 subidx, // Subindex of OD entry

 UNSIGNED32 *totalsize, // RETURN: total size of da ta, only set if >*size

 UNSIGNED32 *size, // RETURN: size of data buffer

 UNSIGNED8 **pDat // RETURN: pointer to data buffer

);

Passed

The parameters passed include the SDO server number (in range from zero to NR_OF_SDOSERVER-1), the

idx (index) and subidx (subindex) of the Object Dictionary and the return values being the total data size

and the size and pointer to the used data buffer.

Returned

0: The specified OD entry is not handled by this function.
1: The specified OD entry is handled by this function. A valid pointer and data size are returned.
5: An SDO abort SDO_ABORT_WRITEONLY is generated.

3.6.8 The MCOUSER_AppSDOReadComplete function

This Micro CANopen Plus function is only available when the compiler directive USECB_APPSDO_READ is

defined. If a transfer was initiated using the function MCOUSER_AppSDOReadInit(), then this function is

called upon completion of the transfer, or whenever the source buffer has been completely transferred

and needs to be refilled to deliver more data.

Declaration

void MCOUSER_AppSDOReadComplete (

 UNSIGNED8 sdoserver, // The SDO server number

 UNSIGNED16 idx, // Index of OD entry

 UNSIGNED8 subidx, // Subindex of OD entry

 UNSIGNED32 *size // RETURN: size of next block of data, 0 for no further data

);

Passed

The parameters passed include the SDO server number (in range from zero to NR_OF_SDOSERVER-1), the

idx (index) and subidx (subindex) of the Object Dictionary.

The value *size returns how many more bytes are going to be transferred to the SDO Client reading

The Micro CANopen Plus Protocol Stack

33

from the entry, or 0 if the read transfer has finished. Before returning from this function with a size value

>0, the read buffer given in the MCOUSER_AppSDOReadInit() function needs to be updated with the next

block of data. The user is responsible for not exceeding the available buffer size with each call of this func-

tion as well as not exceeding the total data size with all calls together.

Returned

Nothing.

3.6.9 The MCOUSER_AppSDOWriteInit function

This Micro CANopen Plus function is only available when the compiler directive USECB_APPSDO_WRITE is

defined. The function can be used to implement custom Object Dictionary write entries of any length.

Data is transferred in segmented mode or block mode if activated. Calls to MCOUS-

ER_AppSDOWriteComplete() are made if the transfer is completed or the destination buffer is full and

more data is about to be received.

Declaration

UNSIGNED8 MCOUSER_AppSDOWriteInit (

 UNSIGNED8 sdoserver, // SDO server number

 UNSIGNED16 idx, // Index of OD entry

 UNSIGNED8 subidx, // S ubindex of OD entry

 UNSIGNED32 *totalsize, // RETURN: total maximum size of data, only set if

>*size

 UNSIGNED32 *size, // Data size, if known. RETURN: max size of data buffer

 UNSIGNED8 **pDat // RETURN: pointer to data buffer

);

Passed

The parameters passed include the SDO server number (in range from zero to NR_OF_SDOSERVER-1), the

idx (index) and subidx (subindex) of the Object Dictionary and the return values being the total data size

and the size and pointer to the used data buffer.

Returned

0: The specified OD entry is not handled by this function.
1: The specified OD entry is handled by this function. A valid pointer and data size are returned.
4: An SDO abort SDO_ABORT_READONLY is generated.

3.6.10 The MCOUSER_AppSDOWriteComplete function

This Micro CANopen Plus function is only available when the compiler directive USECB_APPSDO_WRITE is

defined. If a transfer was initiated using the function MCOUSER_AppSDOWriteInit(), then this function is

called upon completion of the transfer, or if the destination buffer is full and needs to be cleared to re-

ceive more data.

Declaration

void MCOUSER_AppSDOWriteComplete (

 UNSIGNED8 sdoserver, // The SDO server number

 UNSIGNED16 idx, // Index of OD entry

 UNSIGNED8 subidx, // Subindex of OD entry

 UNSIGNED32 size, // number of bytes written (of last block)

The Micro CANopen Plus Protocol Stack

34

 UNSIGNED32 more // number of bytes still to come (of total transfer)

);

Passed

The parameters passed include the SDO server number (in range from zero to NR_OF_SDOSERVER-1), the

idx (index) and subidx (subindex) of the Object Dictionary.

The value size indicates how many bytes were written to the receive buffer (the one specified when

calling MCOUSER_AppSDOWriteInit) and more how many more bytes are expected to be received. After

this call data in the buffer will be overwritten starting at the beginning of the buffer.

Returned

Nothing.

3.6.11 The MCOUSER_SDORdPI function

This Micro CANopen Plus function is only available when the compiler directive USECB_SDO_RD_PI is set

to one. With this function Micro CANopen Plus signals the application that an SDO Read Request was

received and is now to be served. The application can use this call to either update the data or deny ac-

cess.

Declaration

UNSIGNED32 MCOUSER_SDORdPI (

 UNSIGNED16 index, // Index of Object Dicti onary entry

 UNSIGNED8 subindex, // Subindex of Object Dictionary entry

 UNSIGNED16 offset, // Offset to data in process image

 UNSIGNED8 len // Length of data

);

Passed

The arguments passed to the function include the Index and Subindex of the data requested as well as the

location in the process image (offset) and the length of the data.

Returned

Zero if the access is granted (Micro CANopen Plus will automatically send the appropriate SDO response

message). Otherwise the SDO Abort Code to return to the SDO client requesting the data.

3.6.12 The MCOUSER_SDORdAft function

This Micro CANopen Plus function is only available when the compiler directive USECB_SDO_RD_AFTER is

set to one. With this function Micro CANopen Plus signals the application that an SDO Read Request com-

pleted. The application can use this call to clear the data read or to mark it as read.

Declaration

void MCOUSER_SDORdAft (

 UNSIGNED16 index, // Index of Object Dictionary entry

 UNSIGNED8 subindex, // Subindex of Object Dictiona ry entry

 UNSIGNED16 offset, // Offset to data in process image

The Micro CANopen Plus Protocol Stack

35

 UNSIGNED8 len // Length of data

);

Passed

The arguments passed to the function include the Index and Subindex of the data requested as well as the

location in the process image (offset) and the length of the data.

Returned

Nothing.

3.6.13 The MCOUSER_SDOWrPI function

This Micro CANopen Plus function is only available when the compiler directive USECB_SDO_WR_PI is set

to one. With this function Micro CANopen Plus signals the application that an SDO Write Request was

received and is now to be processed. The call happens BEFORE data is copied to the process image. The

application can use this call to verify if the data is within expected range and can send the SDO client

sending the data an ABORT if it is not..

Declaration

UNSIGNED32 MCOUSER_SDOWrPI (

 UNSIGNED16 index, // Index of Object Dictionary entry

 UNSIGNED8 subindex, // Subindex of Object Dictionary entry

 UNSIGNED16 offset, // Offset to data in process image

 UNSIGNED8 *pDat, // Pointer to data received

 UNSIGNED8 len // Length of data

);

Passed

The arguments passed to the function include the Index and Subindex of the data requested as well as the

location in the process image (offset), a pointer to the data received and the length of the data.

Returned

Zero if the access is granted (Micro CANopen Plus will automatically copy the data to the Process Image

and sends the appropriate SDO response message). Otherwise the SDO Abort Code to return to the SDO

client sending the data.

3.6.14 The MCOUSER_SDOWrAft function

This Micro CANopen Plus function is only available when the compiler directive USECB_SDO_WR_AFTER is

set to one. With this function Micro CANopen Plus signals the application that an SDO Write Request

completed.

Declaration

void MCOUSER_SDOWrAft (

 UNSIGNED16 index, // Index of Object Dictionary entry

 UNSIGNED8 subindex, // Subindex of Object Dictionary entry

 UNSIGNED16 offset, // Offset to data in process image

 UNSIGNED8 len // Length of data

The Micro CANopen Plus Protocol Stack

36

);

Passed

The arguments passed to the function include the Index and Subindex of the data received as well as the

location in the process image (offset) and the length of the data.

Returned

Nothing.

3.7 Dynamic PDO Mapping Functions
These functions are provided by the optional, extended PDO handling module. These functions are only

available when the compiler directive USE_DYNAMIC_PDO_MAPPING is set to one.

3.7.1 The XPDO_ResetPDOMapEntry function

This function is used to reset a PDO's mapping to the hard-coded default (typically generated by CANopen

Architect).

Declaration

UNSIGNED8 XPDO_ResetPDOMapEntry (

 UNSIGNED8 TxRx, // Set to 0 for TPDO, 1 for RPDO

 UNSIGNED16 PDONr // Number of PDO, 1 to 512

);

Passed

The value TxRx is set to 0 for a Transmit PDO or 1 for a Receive PDO.

The parameter PDONr indicates the PDO number which has to be in the range from 1 to 512.

Returned

TRUE if PDO was found and reset, else FALSE.

3.7.2 The XPDO_SetPDOMapEntry function

With this function a simple PDO mapping entry can be set by the application. It has the same effect as

writing via CANopen to the corresponding PDO mapping parameter value.

Declaration

UNSIGNED8 XPDO_SetPDOMapEntry (

 UNSIGNED8 TxRx, // Set to 0 for TPDO, 1 for RPDO

 UNSIGNED16 PDONr, // Number of PDO, 1 to 512

 UNSIGNED8 EntryNr, // Mapping entry (0 to 8)

 UNSIGNED16 Index, // Index of OD entry to be mapped

 UNSIGNED8 SubIdx, // Subindex of OD entry to be mapped

 UNSIGNED8 Length // Length of OD entry mapped (in bytes)

);

Passed

The value TxRx is set to 0 for a Transmit PDO or 1 for a Receive PDO.

The Micro CANopen Plus Protocol Stack

37

The parameter PDONr indicates the PDO number which has to be in the range from 1 to 512.

EntryNr specifies which mapping entry is modified, this may be in the range from zero (used to set the

NrOfEntries value) to 8.

The values Index and SubIdx specify the Object Dictionary Entry mapped and Length the length of the

Object Dictionary Entry in bytes.

Returned

TRUE if PDO was found and set, else FALSE.

3.7.3 The XPDO_UpdatePDOMapping function

This function is used to activate a PDO's new mapping. If one or multiple mapping entries have been

changed using the XPDO_SetPDOMapEntry() function, then this function must be called to activate the

mapping.

Declaration

UNSIGNED8 XPDO_UpdatePDOMapping (

 UNSIGNED8 TxRx, // Set to 0 for TPDO, 1 for RPDO

 UNSIGNED16 PDONr // Number of PDO, 1 to 512

);

Passed

The value TxRx is set to 0 for a Transmit PDO or 1 for a Receive PDO.

The parameter PDONr indicates the PDO number which has to be in the range from 1 to 512.

Returned

Nothing.

3.8 Driver Functions
This section lists all functions that need to be provided by the driver level. If Micro CANopen is used on a

microcontroller architecture for which there is no example included, then these functions must be imple-

mented on the driver level and provided for Micro CANopen.

3.8.1 The MCOHW_Init function

/**

DOES: This function implements the initialization of the CAN

 interface.

RETURNS: 1 if init is completed

 0 if init failed

**/

UNSIGNED8 MCOHW_Init (

 UNSIGNED16 BaudRate

 // Allowed values: 1000, 800, 500, 250, 125, 50, 25, 10

);

The Micro CANopen Plus Protocol Stack

38

3.8.2 The MCOHW_SetCANFilter function

/************************* ***

DOES: This function implements the initialization of a CAN ID hardware

 filter as supported by many CAN controllers.

RETURNS: 1 if filter was set

 2 if this HW does not support filters

 (in this case HW will receive EVERY CAN message)

 0 if no more filter is available

**/

UNSIGNED8 MCOHW_SetCANFilter (

 UNSIGNED16 CANID // CAN - ID to be received by f ilter

);

3.8.3 The MCOHW_GetStatus function

/**

DOES: This function returns the global status variable.

CHANGES: Status can be changed anytime by this module, for example from

 wi thin an interrupt service routine or by any of the other

 functions in this module.

BITS: 0: INIT - set to 1 after a completed initialization

 left 0 if not yet initialized or init failed

 1: CERR - set to 1 if a CAN bi t or frame error occurred

 2: ERPA - set to 1 if a CAN "error passive" occurred

 3: RXOR - set to 1 if a receive queue overrun occurred

 4: TXOR - set to 1 if a transmit queue overrun occurred

 5: Reserved

 6: TXBSY - set to 1 if Transmit queue is not empty

 7: BOFF - set to 1 if a CAN "bus off" error occurred

**/

UNSIGNED8 MCOHW_GetStatus (

 void

);

3.8.4 The MCOHW_PushMessage function

/****** **

DOES: This function implements a CAN transmit queue. With each

 function call a message is added to the queue.

RETURNS: 1 Message was added to the transmit queue

 0 If qu eue is full, message was not added,

NOTES: The Micro CANopen stack will not try to add messages to the queue

 "back - to - back". With each call to MCO_ProcessStack, a maximum

 of one message is added to the queue. For many applications

 a queue with length "1" will be sufficient. Only applications

 with a high busload or very slow bus speed might need a queue

 of length "3" or more.

**/

UNSIGNED8 MCOHW_PushMessage (

 CAN_MSG *pTransmitBuf // Data structure with message to be send

);

3.8.5 The MCOHW_PullMessage function

/**

DOES: This function implements a CAN receive queue. With ea ch

 function call a message is pulled from the queue.

RETURNS: 1 Message was pulled from receive queue

The Micro CANopen Plus Protocol Stack

39

 0 Queue empty, no message received

NOTES: Implementation of this function greatly varies with CAN

 controller used. In an SJA1 000 style controller, the hardware

 queue inside the controller can be used as the queue.

 Controllers with just one receive buffer need a bigger software

 queue. "Full CAN" style controllers might just implement

 multiple m essage objects, one each for each ID received (using

 function MCOHW_SetCANFilter).

**/

UNSIGNED8 MCOHW_PullMessage (

 CAN_MSG *pTransmitBuf // Data structure with message recei ved

);

3.8.6 The MCOHW_GetTime function

/**

DOES: This function reads a 1 millisecond timer tick. The timer tick

 must be a UNSIGNED16 and must be incremented once per

 millisecond.

RETURNS: 1 millisecond timer tick

NOTES: Data consistency must be insured by this implementation.

 (On 8 - bit systems, disable the timer interrupt incrementing

 the timer tick while executing this function)

 Systems th at cannot provide a 1ms tick may consider incrementing

 the timer tick only once every "x" ms, if the increment is by

 "x".

**/

UNSIGNED16 MCOHW_GetTime (

 void

);

3.8.7 The MCOHW_IsTimeExpired function

/**

DOES: This function compares a UNSIGNED16 timestamp to the internal

 timer tick and returns 1 if the timestamp expired/passed.

RETURNS: 1 if timestamp expired/passed

 0 if timestamp is not yet reached

NOTES: The maximum timer run - time measurable is 0x8000 (about 32 secs).

 For the usage in Micro CANopen that is sufficient.

*** *********************/

UNSIGNED8 MCOHW_IsTimeExpired (

 UNSIGNED16 timestamp // Timestamp to be checked for expiration

);

3.8.8 The NVOL_Init function (Plus)

This function is only needed when the Store Parameter functionality is used.

/********************** **

DOES: Initializes access to non - volatile memory.

**/

void NVOL_Init (

 void

);

The Micro CANopen Plus Protocol Stack

40

3.8.9 The NVOL_ReadByte function

This function is only needed when the Store Parameter functionality is used.

/**

DOES: Reads a data byte from non - volatile memory.

RETURNS: The data read from memory

*************************************** *********************************/

UNSIGNED8 NVOL_ReadByte (

 UNSIGNED16 address // location of byte in NVOL memory

);

3.8.10 The NVOL_WriteByte function

This function is only needed when the Store Parameter functionality is used.

/*************************** ***

DOES: Writes a data byte to non - volatile memory

RETURNS: nothing

**/

void NVOL_WriteByte (

 UNSIGNED16 address, // location of byte in N VOL memory

 UNSIGNED8 data

);

3.8.11 The NVOL_WriteComplete function

This function is only needed when the Store Parameter functionality is used.

/**

DOES: Is called when a consecutive b lock of write cycles is complete.

 The driver may buffer the data from calls to NVOL_WriteByte with

 consecutive destination addrs. in RAM and then write the entire

 buffer to non - volatile memory upon a call to this function.

****** **/

void NVOL_WriteComplete (

 void

);

3.8.12 The MCOHWMGR_SetCANFilter function (MGR)

This function is only needed when the Manager functionality is used. CAN messages received for the

Manager are received in an additional receive queue from which they are polled with an own Pull function

(see below).

/**

DOES: This function implements an additional CAN receive filter

 used by the manager. Messages received using this ID are pulled

 by the manager using function MCOHWMGR_PullMessage

 Filter set receives msgs from 0x81 to 0xFF and 0x581 to 0x5FF

RETURNS: TRUE or FALSE, if filter was not set

************ **/

UNSIGNED8 MCOHWMGR_SetCANFilter

 (

 void

);

The Micro CANopen Plus Protocol Stack

41

3.8.13 The MCOHWMGR_PullMessage function (MGR)

This function is only needed when the Manager functionality is used. CAN messages received for the

Manager are received in an additional receive queue from which they are polled with this Pull function.

/**

DOES: This function is used by the manager to poll messages that are

 needed by the manager

RETURNS: TRUE or FALSE, if no message was received

**/

UNSIGNED8 MCOHWMGR_PullMessage (

 CAN_MSG *pReceiveBuf // buffer to witch a received message is copied

);

3.9 Using Software CAN Filters and FIFOs
For maximum portability to various CAN controllers the module canfifo implements CAN message receive

filters in software including message FIFOs. Applications requiring Manager functionality like listening to

ALL Heartbeats, Emergencies or SDO channels should use this module.

To activate the module, define USE_CANFIFO and specify the following sizes:

#define TXFIFOSIZE X

The value X must be 0, 4, 8, 16, 32 or 64. Setting this to one of the non-zero values implements a software

transmit FIFO. Any CAN message transmitted is copied to this FIFO first. The default behavior is that the

FIFO is checked for transmission by each 1ms timer interrupt.

#define RXFIFOSIZE Y

The value Y must be 0, 4, 8, 16 or 32. Setting this to one of the non-zero values implements a software

receive FIFO. Any CAN message received is copied by the receive interrupt service routine to this FIFO

first. Using the MCOHW_PullMessage() function Micro CANopen periodically checks if a message arrived

and requires processing.

#define MGRFIFOSIZE Z

The value Z must be 0, 4, 8, 16 or 32. Setting this to one of the non-zero values implements a software

receive FIFO for CAN messages received by the Manager functionality. These are all Heartbeats, Emergen-

cies and SDO Client responses. Any CAN message received for this is copied by the receive interrupt ser-

vice routine to this FIFO first. Using the MCOHWMGR_PullMessage() function Micro CANopen periodically

checks if a message arrived and requires processing.

3.9.1 Using Software CAN Receive Filters

When this module is used an array of 2048 bits is used to filter CAN message IDs that are received and

processed. One bit represents one of the 2048 possible CAN IDs.

By a call to CANSWFILTER_Set(CAN_ID) the corresponding bit is set – the message with CAN_ID is now

received.

A call to CANSWFILTER_Match(CAN_ID) checks if the corresponding bit is set and if the message with

CAN_ID needs to be received.

The Micro CANopen Plus Protocol Stack

42

3.9.2 Using the FIFOs

Each FIFO has its own access functions. To copy a CAN message into the FIFO, the function

CANxxxFIFO_GetInPtr() must be called. It returns a pointer to a structure CAN_MSG to which the CAN

message can now be copied. If a null pointer is returned the FIFO is full and a FIFO overrun needs to be

signaled to the application that this message is now lost.

Once copying is completed, the function CANxxxFIFO_InDone() must be called to update the internal FIFO

in and out counters.

To read a message from the FIFO, the function CANxxxFIFO_GetOutPtr() must be called. It returns a null

pointer if the FIFO is empty. If at least one message is in the FIFO, then a pointer to the CAN_MSG struc-

ture in the FIFO is returned. Data can now be retrieved using this pointer.

Once the message is fully retrieved, the function CANTXFIFO_OutDone() must be called to update the

internal FIFO in and out pointers.

3.9.3 Sample CAN Receive Interrupt Implementation

If a CAN controller is configured to receive all CAN messages on the bus, then the following steps need to

be taken in the CAN receive interrupt:

Check if CAN message ID is for Manager functionality

 Heartbeat, Emergency, SDO Response

If yes, copy message to MGR FIFO and leave interrupt

 CANMGRFIFO_GetInPtr(), copy data, CANMGRFIFO_InDone()

 Note: On FIFO overrun report overrun to status variable

Check if CAN message ID is for this CANopen node

 CANSWFILTER_Match(CAN_ID)

If yes, copy message to RX FIFO and leave interrupt

 CANRXFIFO_GetInPtr(), copy data, CANRXFIFO_InDone()

 Note: On FIFO overrun report overrun to status variable

The Micro CANopen Plus Protocol Stack

43

 4 CANopen Code Configuration
The file nodecfg.h contains the #define settings that configure and enable specific CANopen code func-

tionality. The file settings in procimg.h specify the size and contents of the process image. The settings in

mcohw.h define hardware related settings.

Since Version 2.6 Micro CANopen Plus source code files can automatically be generated by the CANopen

Architect.

4.1 Default Configuration of nodecfg.h

4.1.1 #define ENFORCE_DEFAULT_CONFIGURATION [0|1]

This setting enables the default configuration of Micro CANopen. This is the only fully tested configura-

tion, all other configuration options are provided for customer specific optimizations.

4.2 General Settings of nodecfg.h

4.2.1 #define USE_MCOP [0|1]

This setting enables the “Plus” functionality of Micro CANopen Plus. It must be set to 1 when any of the

functions in the module mcop.c are used.

4.2.2 #define CHECK_PARAMETERS [0|1]

If CHECK_PARAMETERS is enabled, additional code is generated that does plausibility checks upon entry

of code functions, such as checking if parameters are within the allowed range. If a parameter is out of

range, a call to MCOUSER_FatalError() is executed.

4.2.3 #define USE_LEDS [0|1]

Setting USE_LEDS to 1 enables two CANopen indicator lights as specified by the CiA document DR303.

Both a RUN and ERR light are supported. When using this option, additional defines must be used for the

physical switching of each light. These are LED_RUN_ON and LED_RUN_OFF for the RUN LED and

LED_ERR_ON and LED_ERR_OFF for the ERR LED.

4.3 PDO Settings of nodecfg.h

4.3.1 #define NR_OF_RPDOS [num]

This value defines the number of RPDOs (Receive Process Data Objects) implemented. The value range is

from 0 to 512.

The Micro CANopen Plus Protocol Stack

44

4.3.2 #define NR_OF_TPDOS [num]

This value defines the number of TPDOs (Transmit Process Data Objects) implemented. The value range

may be from 0 to 512.

4.3.3 #define USE_EVENT_TIME [0|1]

If USE_EVENT_TIME is enabled, TPDO trigger events may include using the event timer (periodic transmis-

sion every X milliseconds).

4.3.4 #define USE_INHIBIT_TIME [0|1]

If USE_INHIBIT_TIME is enabled, TPDO trigger events may include COS (Change Of State) detection with

using the inhibit time.

NOTE:

Internally all inhibit times are calculated and used based on a resolution of one millisecond. However,

CANopen specifies the inhibit time with a resolution of 100 microseconds. To be CANopen compatible,

Micro CANopen automatically does a divide or multiply by 10 when communicating the inhibit time via

SDO requests/responses.

4.3.5 #define USE_SYNC [0|1]

If USE_SYNC is enabled, the PDOs support synchronized transmission. To activate SYNC transmission, a

configuration tool needs to write the appropriate values to the transmission type field of the PDO com-

munication parameters.

4.3.6 #define USE_DYNAMIC_PDO_MAPPING [0|1]

If the optional (available as order option) USE_DYNAMIC_PDO_MAPPING is enabled, the PDOs support

dynamic mapping and multi-mapping. With dynamic mapping, the PDO mapping can be changed at run-

time. This allows changing which Object Dictionary entries are transmitted/received in a PDO. In addition,

multi-mapping is supported, which allows one Object Dictionary entry to be mapped to multiple PDOs.

4.4 NMT Service Settings of nodecfg.h

4.4.1 #define AUTOSTART [0|1]

When AUTOSTART is enabled, the CANopen device directly switches itself into the operational state after

power-on or reset without waiting for a CANopen NMT Master message with an operational command.

4.4.2 #define DEFAULT_HEARTBEAT [ms]

The Object Dictionary entry [1017h,00h] Heartbeat Producer Time is implemented as read-write. The

DEFAULT_HEARTBEAT defines the default heartbeat time used by Micro CANopen and is specified in milli-

seconds.

The Micro CANopen Plus Protocol Stack

45

4.4.3 #define DYNAMIC_HEARTBEAT_CONSUMER [0|1], #define
NR_HB_CONSUMER [num]

When DYNAMIC_HEARTBEAT_CONSUMER is enabled, the Object Dictionary entries [1016h,xx] Heartbeat

Consumer are implemented as read-write and can be changed through configuration. Otherwise they are

hard-coded and cannot change during operation.

NR_HB_CONSUMER defines if the heartbeat consumer functionality is enabled. If this define is set to 0,

the heartbeat consumer functionality is disabled. If unequal zero, it defines the maximum number of

channels implemented, directly specifying the number of CANopen nodes that can be monitored.

4.4.4 #define USE_EMCY [0|1],
#define ERROR_FIELD_SIZE [num]

When USE_EMCY is enabled, Micro CANopen Plus supports the generation of emergency messages.

Emergencies are generated after each reset (“No Error” Emergency Message), upon critical failures (such

as receiving a PDO with an illegal length) and upon application specific emergency events. Emergencies

transmitted are copied into a error history, the predefined error field [1003h]. The size of the error history

(in number of errors saved) is defined using ERROR_FIELD_SIZE.

See also chapter 2.5.6 Emergency Producer and Emergency messages for an overview of auto-generated

emergency messages.

4.4.5 #define USE_NODE_GUARDING [0|1]

CANopen experts do not recommend the usage of node guarding. Instead, the newer heartbeat method

should be used. However, to be compliant with legacy devices, Micro CANopen Plus supports minimal

node guarding functionality that is enabled if this setting is enabled.

4.4.6 #define USE_STORE_PARAMETERS [0|1],
#define NVOL_STORE_START [num],
#define NVOL_STORE_SIZE [num]

When USE_STORE_PARAMETERS is enabled, the Store Parameters functionality of Micro CANopen Plus is

available. The module storpara.c is required for this functionality.

When USE_STORE_PARAMETERS is enabled, the define NVOL_STORE_START must be set to the first usa-

ble address in the non-volatile memory. The default is zero. The application could use a value of greater

than zero to reserve/protect a memory area in the non-volatile memory from accesses by the store pa-

rameters functionality. The functions of the store parameters module will not access non-volatile memory

outside the window defined by NVOL_STORE_START and NVOL_STORE_SIZE. In case the window size is

too small, the function MCOUSER_FatalError will be called.

4.4.7 #define NR_OF_SDOSERVER [num]

Defines the number of SDO servers implemented. A value of greater than one is currently only supported

for CiA447 (car add-on devices) applications.

The Micro CANopen Plus Protocol Stack

46

4.4.8 #define USE_SLEEP [0|1]

Defines if the sleep mode as first introduced by CiA447-1 is implemented. If enabled, the call-back func-

tion MCOUSER_Sleep() must be implemented.

4.5 Other Settings of nodecfg.h

4.5.1 #define USE_CiA447 [0|1]

Enables the CiA 447 specific support for the device profile for car add-on devices. This will need the

CiA447 add-on module to Micro CANopen Plus to build.

4.5.2 #define USE_SDOMESH [0/1]

Enable the SDO fully-meshed setup for SDO communication in any direction between up to 16 nodes in a

network.

4.6 User Call-Back Functions of nodecfg.h

4.6.1 #define USECB_NMTCHANGE [0|1]

When USECB_NMTCHANGE is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_NMTChange to signal a change in the NMT Slave State to the application.

4.6.2 #define USECB_SYNCRECEIVE [0|1]

When USECB_SYNCRECEIVE is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_SYNCReceived to signal the reception of the SYNC signal to the application.

4.6.3 #define USECB_RPDORECEIVE [0|1]

When USECB_RPDORECEIVE is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_RPDOReceived to signal the reception of an RPDO to the application.

4.6.4 #define USECB_ODDATARECEIVED [0|1]

When USECB_ODDATARECEIVED is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_ODData to signal the application that data was received and copied into the process image.

This is called for both PDO and SDO accesses.

4.6.5 #define USECB_TPDORDY [0|1]

When USECB_TPDORDY is enabled, Micro CANopen Plus calls the function MCOUSER_TPDOReady right

before it sends a TPDO. This allows the application to update the TPDO data before it is sent, if necessary.

The Micro CANopen Plus Protocol Stack

47

4.6.6 #define USECB_SDOREQ [0|1]

When USECB_SDOREQ is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_SDORequest to signal the reception of an unknown SDO request to the application.

4.6.7 #define USECB_SDO_RD_PI [0|1]

When USECB_SDO_RD_PI is enabled, Micro CANopen Plus uses the call-back function MCOUSER_SDORdPI

to signal to the application, that a SDO read request for data located in the process image was received.

The call-back is executed BEFORE Micro CANopen executes the read, allowing the application to either

update the data or deny access to it.

4.6.8 #define USECB_SDO_RD_AFTER [0|1]

When USECB_SDO_RD_AFTER is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_SDORdAft to signal to the application, that a SDO read request for data located in the process

image was executed. The call-back is executed AFTER Micro CANopen executes the read, allowing the

application to mark the data as read or clear it.

4.6.9 #define USECB_SDO_WR_PI [0|1]

When USECB_SDO_WR_PI is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_SDOWrPI to signal to the application, that a SDO write request for data stored in the process

image was received. The call-back is executed BEFORE Micro CANopen copies the data to the process

image, allowing the application to verify the data (e.g. execute a range check).

4.6.10 #define USECB_SDO_WR_AFTER [0|1]

When USECB_SDO_WR_AFTER is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_SDOWrAft to signal to the application, that a SDO write request for data located in the

process image was executed. The call-back is executed AFTER Micro CANopen executes the write,

allowing the application to now use the data received..

4.6.11 #define USECB_APPSDO_READ [0|1]

When USECB_APPSDO_READ is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_AppSDOReadInit to allow the application to implement access to readable, custom Object

Dictionary entries of various lengths. One usage example would be a text buffer that can contain

messages of different lengths.

The parameters for MCOUSER_AppSDOReadInit also include return values for a size and pointer – these

can be used to inform Micro CANopen Plus of the location and size of the buffer that contains the

“response”.

The Micro CANopen Plus Protocol Stack

48

4.6.12 #define USECB_APPSDO_WRITE [0|1]

When USECB_APPSDO_WRITE is enabled, Micro CANopen Plus uses the call-back functions

MCOUSER_AppSDOWriteInit and MCOUSER_AppSDOWriteComplete to allow the application to

implement access to writable, custom Object Dictionary entries of various lengths. One usage example

would be text display that can accept text messages of various length.

The parameters for MCOUSER_AppSDOWriteInit also include return values for a receive buffer and its

size. Micro CANopen copies the data received to the location specified.

With MCOUSER_AppSDOWriteComplete Micro CANopen informs the application that data was received

and now has to be processed. The parameter “more” indicates if all data was received or more will follow,

in which case the application needs to read all data from the buffer as it will be overwritten with the

following data segments.

The Micro CANopen Plus Protocol Stack

49

 5 SDO Fully-Meshed Communication
For small networks of up to 16 nodes, Micro CANopen Plus together with the manager add-on features a

built-in configuration that allows any node to access all of the object dictionary of another node at any

time without restrictions. This is done by enabling 16 SDO server channels and 16 SDO clients in each

node and setting the channels up using a custom COB-ID assignment scheme.

5.1 Prerequisites
Since the fully-meshed setup uses a custom COB-ID assignment scheme for the SDO channels, all nodes

have to support it. Essentially, this means that all nodes have to use Micro CANopen Plus with SDO FULLY-

MESHED enabled.

Since a successful SDO communication needs both the server and the client, and the SDO client is part of

the Micro CANopen Plus manager add-on, this functionality needs the manager add-on to function.

5.2 Limitations
Regular CANopen nodes with default (CiA301) SDO servers cannot be combined with Micro CANopen Plus

“SDO fully meshed” nodes on the same network.

The scheme cannot be used in a network where the time stamp object (COB-ID 100h) is used, when both

the node IDs 9 and 1 are present and node 9 accesses node 1, using the scheme.

The scheme is not useful if nodes don't have access to the SDO client functions only present in the man-

ager add-on module.

5.3 SDO Communication Setup
The following graph illustrates the SDO communication setup. The arrows point from the node sending

the request (SDO client) to the node responding (SDO server). The first number accompanying each arrow

is the COB-ID used for the request, the second number is the COB-ID of the response:

The Micro CANopen Plus Protocol Stack

50

5.4 Usage Example (With Manager Add-On)
For the meshed communication, the stack automatically defines macros to set up the SDO client channels:

CAN_ID_SDOREQUEST(client,server)

CAN_ID_SDORESPONSE(client,server)

They should be used with client set to MY_NODE_ID. The following code illustrates a non-blocking SDO

access, using call-backs.

The Micro CANopen Plus Protocol Stack

51

Variables:

SDOCLIENT *pSC; // pointer to SDO client

UNSIGNED8 chn; // channel usage

UNSIGNED8 buf_S DO[4];

Setting up channel and starting request in the application:

chn = 0;

// Set up SDO channel 1 to talk to node 9 using buf_SDO data

pSC = MGR_InitSDOClient(1,CAN_ID_SDOREQUEST(MY_NODE_ID,9),

 CAN_ID_SDORESPONSE(MY_NODE_ID,9),

 &(buf_SDO[4]),4);

// Start read request of [0x1000,0x00] of remote node

MGR_SDOClientRead(pSC,0x1000,0x00);

chn = 1; // chn is in use

The manager processing function MGR_ProcessMGR() has to be called periodically. When the request

is completed, it will call MGRCB_SDOComplete:

/***

DOES: Called when an SDO client transfer is completed

RETURNS: nothing

***/

void MGRCB_SDOComplete (

 UNSIGNED8 channel, // SDO channel number in range of 1 to

 // NR_OF_SDO_CLIENTS

 UNSIGNED32 abort_code // status, error, abort code

)

{

 // SDO Client example of non - blocking version

 if (channel == 1)

 {

 if ((abo rt_code == SDOERR_READOK) ||

 (abort_code == SDOERR_WRITEOK))

 {

 chn++; // signal OK

 }

 else

 {

 chn = 0xFF; // signal ABORT

 }

 }

}

In the application, we may react to our SDO status variable:

if (chn > 1)

 if (chn = 0 xFF)

 [process SDO abort]

 else

 [start next request to node 9]

The Micro CANopen Plus Protocol Stack

52

 6 Appendix - Using Auto-Generated Sources
The CANopen EDS Editor “CANopen Architect” can generate source files directly usable by Micro CANo-

pen Plus. This chapter summarizes the steps that need to be taken to generate the files and integrate

them to Micro CANopen Plus based applications.

The application examples provided with Micro CANopen Plus have their EDS, DCF and auto-generated files

stored in the directory MCO_APPLICATIONNAME/EDS/

6.1 File Generation
When editing an EDS or DCF with CANopen Architect some extra care should be taken when defining the

access type for the Object Dictionary entry.

If the access type of an entry is CONST (constant), then CANopen Architect will not place the entry into

the process image but will try to locate it in the non-volatile code space area. This helps to conserve the

limited space available for process image data.

As an example, the entries [1008h-100Ah,00h] should be specified as CONST, as these are constant, read-

only strings.

For entries using multiple subindexes, the first subindex entry (subindex 0) should also be marked as type

CONST. CANopen Architect then places these into the SDO Reply table and not into the process image.

To generate the source files from CANopen Architect, simply select the menu “File | Export C Sources

Files...”. It is recommended to use the default file names suggested when exporting the files.

6.2 File Integration
This section describes the information found in each of the generated files and how these files need to be

integrated into the application.

6.2.1 pimg.h

The file pimg.h contains the basic #define settings required by Micro CANopen Plus and all process image

offset and size definitions for variables stored in the process image.

This file needs to be included to all the application’s C source files that make accesses to data contained in

the process image.

6.2.2 stackinit.h

The file stackinit.h contains auto-generated calls to the functions MCO_InitRPDO and MCO_InitTPDO

which initialize the PDOs. The calls are provided as macro INITPDOS_CALLS.

The file also contains auto-generated calls to the functions MCO_InitHBConsumer to set up heartbeat

consumer channels. The calls are provided as macro INITHBCONSUMER_CALLS.

This file should be included to the C source file initializing the CANopen stack and making the call to

MCO_Init. This is typically the file user_xxx.c and the call to MCO_Init is made in MCOUS-

ER_ResetCommunication.

The Micro CANopen Plus Protocol Stack

53

The recommended use is:

if (MCO_Init(can_bps,node_id,DEFAULT_H EARTBEAT))

{

 //Initialization of PDOs comes from EDS

 INITPDOS_CALLS

 INITHBCONSUMER_CALLS

}

Note: If the CANopen Manager Add-on is used, the heartbeat consumers must be initialized later, after

MGR_InitMgr() has been called to initialize the manager.

6.2.3 entriesandreplies.h

The file entriesandreplies.h contains all auto-generated Object Dictionary entries. These are provided as

macros and can directly be included into the data tables defined in the user_xxx.c file.

Use Example:

...

#include "EDS/entriesan dreplies.h"

...

// Table with SDO Responses for read requests to OD

UNSIGNED8 MEM_CONST gSDOResponseTable[] = {

 // Include file generated by CANopen Architect

 SDOREPLY_ENTRIES

 // End - of - table marker

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF

} ;

// Table with Object Dictionary entries to process Data

OD_PROCESS_DATA_ENTRY MEM_CONST gODProcTable[] =

{

 ODENTRY_ENTRIES

 // End - of - table marker

 ODENTRY(0xFFFF,0xFF,0xFF,0xFFFF)

};

#ifdef USE_EXTENDED_SDO

// Table with generic entries to memory

OD_GENERIC_DATA_ENTRY MEM_CONST gODGenericTable[] =

{

 ODGENTRY_ENTRIES

 ODGENTRYP(0xFFFF,0xFF,0xFF,0xFFFF,0xFFFFF)

};

#endif // USE_EXTENDED_SDO

The Micro CANopen Plus Protocol Stack

54

 7 Apendix – Advanced Manual Configuration

7.1 RTOS Integration
The most simplistic way to integrate Micro CANopen with a Real-Time Operating System is to call

MCO_ProcessStack periodically, for example from a one millisecond timer task.

7.1.1 RTOS Task: Receive and Tick

A more advanced configuration would not use MCO_ProcessStack at all, but the mayor two sub functions

MCO_ProcessStackRx and MCO_ProcessStackTick.

In an RTOS environment, the driver function MCOHW_PullMessage should be implemented waiting /

blocking and only return when a CAN message was received. The function MCO_ProcessStackRx can then

be executed repeatedly without further delay in its own task.

 for(;;) MCO_ProcessStackRx();

The function MCO_ProcessStackTick should be called with every RTOS timer tick. If a tick of 1ms or smaller

is used, a single call is sufficient. If the RTOS tick is greater than one, then MCO_ProcessStackTick should

be called repeatedly as long as the return value is TRUE.

 while (MCO_ProcessStackTick() == TRUE);

7.1.2 Process Image Integrity

In order to protect the process image from multiple accesses “at the same time”, the tasks accessing it

need to lock it as a single resource. To ease the implementation of such locks, all process image accesses

(also from the application) must be made using the macros PI_READ(), PI_WRITE() and PI_COMP().

These macros need to be customized to implement a mutex or single token semaphore lock before mak-

ing the access and a release /free of the mutex / semaphore after the access.

7.2 Object Dictionary Configuration
Since version 2.6 the Object Dictionary configuration can be automatically generated by CANopen Archi-

tect. Example directories ending in “_CA” contain examples that use such automatically generated config-

urations. The default file name for the file containing the process image variable definitions is entriesan-

dreplies.h.

Although working with CANopen EDS and DCF files is the standard procedure for many CANopen configu-

ration tools, many embedded CANopen nodes require a specific default configuration that a node should

use if not configured through a CANopen configuration tool or by a CANopen Configuration Manager.

In Micro CANopen the default configuration is setup via tables typically implemented in a file called us-

er_xxx.c (User Object Dictionary file).

The tables gSDOResponseTable and gODProcTable define the contents of the Object Dictionary. When

using auto-generated files the auto-generated data can be included into these tables using the Macros

SDOREPLY_ENTRIES, ODENTRY_ENTRIES and ODGENTRY_ENTRIES.

The Micro CANopen Plus Protocol Stack

55

7.2.1 Constant Expedited Object Dictionary Entries

The gSDOresponseTable table

The table gSDOresponseTable is an array of bytes that contains a list of SDO responses for SDO requests

to constant, read-only entries in the object dictionary limited to 4 bytes or less. Typically these contain the

[1000,00] Device Type entry, the [1018,xx] Identity Objects and some “Number of Entries” type entries

with a Subindex of zero.

Each entry in this list has 8 bytes that directly contain the 8 bytes used in a CAN message with an expedit-

ed SDO response to a read (upload) request.

The macros SDOREPLY and SDOREPLY4 are provided to ease the generation of the 8-byte entries.

The last entry must be 8 times 0xFF to indicate the end of the table.

The current implementation does not require that the entries are sorted in any way.

The SDOREPLY macro

This macro generates the 8-byte SDO response required for a read (upload) request from an Object Dic-

tionary entry with a constant entry.

SDOREPLY(INDEX,SUBINDEX,LENGTH,VALUE)

INDEX is the 16-bit Index of the Object Dictionary entry.

SUBINDEX is the 8-bit Subindex of the Object Dictionary entry.

LENGTH is the length of the Object Dictionary entry in bytes and must be in the range of 1 to 4.

VALUE is the value of the Object Dictionary entry. It must be defined as a 32-bit value even if LENGTH is

less than 4-bytes. In that case the unused bytes must be set to zero.

The Object Dictionary entry [1000h,00h] with a value of 00030191h can be generated by:
SDOREPLY(0x1000,0x00,4,0x00030191L),

The Micro CANopen Plus Protocol Stack

56

The SDOREPLY4 macro

This macro generates the 8-byte SDO response required for a read (upload) request from an Object Dic-

tionary entry with a constant entry of 4 bytes with an ASCII interpretation. This simplifies the generation

of 32-bit Object Dictionary entries whose contents are not interpreted as a 32-bit value but as 4 charac-

ters.

SDOREPLY4(INDEX,SUBINDEX,CHAR1,CHAR2,CHAR3,CHAR4)

INDEX is the 16-bit Index of the Object Dictionary entry.

SUBINDEX is the 8-bit Subindex of the Object Dictionary entry.

CHAR1 through CHAR4 contain the 4 characters stored at this Object Dictionary entry.

7.2.2 Variable Expedited and Mapped Object Dictionary Entries

The gODProcTable

This table is an array of structures that defines Object Dictionary entries whose data is located in the pro-

cess image and that can be mapped into PDOs (Process Data Objects). All Object Dictionary entries that

can be mapped to a PDO or need to be shared with the application via the process image must be defined

in this table. The macro ODENTRY can be used to simplify entries into this table.

The last entry must use the index FFFFh to mark the end of the table.

The current implementation does not require that the entries are sorted in any way.

The ODENTRY macro

ODENTRY(INDEX,SUBINDEX,TLINFO,OFFSET)

INDEX is the 16-bit Index of the Object Dictionary entry.

SUBINDEX is the 8-bit Subindex of the Object Dictionary entry.

TLINFO is an 8-bit value that defines access type and length of the Object Dictionary entry. The TLINFO

value can be generated by adding up the length of the Object Dictionary entry (must be in the range of 1

to 4) and the following status bits:

¶ if the entry is readable via SDO requests, add ODRD

¶ if the entry is writable via SDO requests, add ODWR

Note that an entry can be both readable and writable.

If the dynamic PDO mapping add-on (optional) is used, then then two additional bits are used to identify if

this Object Dictionary entry can be mapped and where it can be mapped to.

¶ if the entry is read-mappable (mappable to TPDO), add RMAP

¶ if the entry is write-mappable (mappable to RPDO), add WMAP

OFFSET defines the location of the data for this Object Dictionary entry in the process image. If set to 3,

the data is located starting at the 4
th

 byte in the process image.

The Micro CANopen Plus Protocol Stack

57

An Object Dictionary entry [6200h,01h] containing a one byte value that supports both read and write

accesses and whose data is located in the 8
th

 byte of the process image is defined as follows:
ODENTRY(0x6200,0x01,1+ODRD+ODWR,7),

7.2.3 Generic Object Dictionary Entries

The gODGenericTable

This table contains the remaining, generic Object Dictionary entries, typically longer than 4 bytes. This

data may also be located outside the process image as it works with pointers that can point to any

memory location. There are two macros provided. ODGENTRYP is for entries that are located in the pro-

cess image and ODGENTRYC is used for entries using a pointer to any memory location (intended usage is

for constant values, hence ‘C’).

The ODGENTRYP macro

ODGENTRYP(INDEX,SUBINDEX,ACCESS,LENGTH,OFFSET)

INDEX is the 16-bit Index of the Object Dictionary entry.

SUBINDEX is the 8-bit Subindex of the Object Dictionary entry.

ACCESS is an 8-bit value that defines the access type of the Object Dictionary entry. The following status

bits are used:

¶ if the entry is readable via SDO requests, add ODRD

¶ if the entry is writable via SDO requests, add ODWR

Note that an entry can be both readable and writable.

LENGTH is the length of the Object Dictionary entry in bytes.

OFFSET defines the location of the data for this Object Dictionary entry in the process image. If set to 3,

the data is located starting at the 4
th

 byte in the process image.

An Object Dictionary entry [2200h,00h] containing a 10 byte value that supports both read and write

accesses and whose data is located in the 8
th

 byte of the process image is defined as follows:
ODGENTRYP(0x2200,0x00,ODRD+ODWR,10,7),

The ODGENTRYC macro

ODGENTRYC(INDEX,SUBINDEX,ACCESS,LENGTH,POINTER)

INDEX is the 16-bit Index of the Object Dictionary entry.

SUBINDEX is the 8-bit Subindex of the Object Dictionary entry.

ACCESS is an 8-bit value that defines the access type of the Object Dictionary entry. The following status

bits are used:

¶ if the entry is readable via SDO requests, add ODRD

¶ if the entry is writable via SDO requests, add ODWR

Note that an entry can be both readable and writable.

The Micro CANopen Plus Protocol Stack

58

LENGTH is the length of the Object Dictionary entry in bytes.

POINTER defines the location of the data for this Object Dictionary entry in the memory of the micropro-

cessor.

An Object Dictionary entry [1008h,00h] containing a read-only string is defined as follows:

ODGENTRYC(0x1008,0x00,ODRD,23,&(ò Micro CANopen DS401 Demoò))

	2 The Micro CANopen Protocol Stack
	2.1 Micro CANopen Manager Add-On
	2.2 Extended OD and PDO Add-On
	2.3 CANopen Documentation
	2.4 File and Directory Structure
	2.4.1 Common Shared Directory
	2.4.2 Application Directory
	2.4.3 Hardware-specific Directory
	2.4.4 Simulation-specific Directory
	2.4.5 Common Shared Directory for Micro CANopen Manager (optional)
	2.4.6 Common Shared Directory for extended OD and PDO features (optional)

	2.5 Functional Overview
	2.5.1 Process Image Usage
	2.5.2 Object Dictionary and SDO Server
	2.5.3 Heartbeat vs. Node Guarding
	2.5.4 Micro CANopen PDO Communication Parameters
	2.5.5 Number of PDOs
	2.5.6 Emergency Producer and Emergency messages
	2.5.7 Emergency Consumer
	2.5.8 Heartbeat Consumer
	2.5.9 Store Parameters
	2.5.10 Layer Setting Services
	2.5.11 SDO Fully-Meshed Communication
	2.5.12 User Call-Back Functions
	2.5.13 CiA 401 Generic I/O Example Application
	2.5.14 Dynamic PDO Mapping Example Application
	2.5.15 CiA 447 Car Add-On Devices Example Application

	3 Application Interface
	3.1 The Process Image
	3.1.1 Configuration of the Process Image
	3.1.2 Accessing the Process Image
	3.1.3 Data Integrity of the Process Image in an RTOS Environment

	3.2 Object Dictionary Configuration
	3.3 CANopen API Functions and Macros
	3.3.1 The MCO_Init function
	3.3.2 The MCO_InitRPDO function
	3.3.3 The MCO_InitTPDO function
	3.3.4 The MCO_InitTPDOFull function
	3.3.5 The MCO_ProcessStack function
	3.3.6 The MCO_TriggerTPDO function
	3.3.7 Process Image Access Macros: The PI_READ macro
	3.3.8 Process Image Access Macros: The PI_WRITE macro
	3.3.9 Process Image Access Macros: The PI_COMP macro
	3.3.10 Default Process Image Access Macros
	3.3.11 Macros for PDO process image access
	3.3.12 Legacy, use PI_READ – The MCO_ReadProcessData function
	3.3.13 Legacy: use PI_WRITE – the MCO_WriteProcessData function

	3.4 CANopen API System Call-Back Functions
	3.4.1 The MCOUSER_ResetCommunication function
	3.4.2 The MCOUSER_ResetApplication function
	3.4.3 The MCOUSER_GetSerial function
	3.4.4 The MCOUSER_NMTChange function
	3.4.5 The MCOUSER_FatalError function
	3.4.6 The MCOUSER_Sleep function

	3.5 CANopen API Application Call-Back Functions
	3.5.1 The MCOUSER_SYNCReceived function
	3.5.2 The MCOUSER_RPDOReceived function
	3.5.3 The MCOUSER_ODData function
	3.5.4 The MCOUSER_TPDOReady function

	3.6 CANopen API Extended Functions
	3.6.1 The MCOP_InitHBConsumer function
	3.6.2 The MCOP_ProcessHBCheck function
	3.6.3 The MCOP_GetStoredParameters function
	3.6.4 The MCOP_PushEMCY function
	3.6.5 The MCOP_TransmitSleepObjection() function
	3.6.6 CANopen API Extended Callbacks
	3.6.7 The MCOUSER_AppSDOReadInit function
	3.6.8 The MCOUSER_AppSDOReadComplete function
	3.6.9 The MCOUSER_AppSDOWriteInit function
	3.6.10 The MCOUSER_AppSDOWriteComplete function
	3.6.11 The MCOUSER_SDORdPI function
	3.6.12 The MCOUSER_SDORdAft function
	3.6.13 The MCOUSER_SDOWrPI function
	3.6.14 The MCOUSER_SDOWrAft function

	3.7 Dynamic PDO Mapping Functions
	3.7.1 The XPDO_ResetPDOMapEntry function
	3.7.2 The XPDO_SetPDOMapEntry function
	3.7.3 The XPDO_UpdatePDOMapping function

	3.8 Driver Functions
	3.8.1 The MCOHW_Init function
	3.8.2 The MCOHW_SetCANFilter function
	3.8.3 The MCOHW_GetStatus function
	3.8.4 The MCOHW_PushMessage function
	3.8.5 The MCOHW_PullMessage function
	3.8.6 The MCOHW_GetTime function
	3.8.7 The MCOHW_IsTimeExpired function
	3.8.8 The NVOL_Init function (Plus)
	3.8.9 The NVOL_ReadByte function
	3.8.10 The NVOL_WriteByte function
	3.8.11 The NVOL_WriteComplete function
	3.8.12 The MCOHWMGR_SetCANFilter function (MGR)
	3.8.13 The MCOHWMGR_PullMessage function (MGR)

	3.9 Using Software CAN Filters and FIFOs
	3.9.1 Using Software CAN Receive Filters
	3.9.2 Using the FIFOs
	3.9.3 Sample CAN Receive Interrupt Implementation

	4 CANopen Code Configuration
	4.1 Default Configuration of nodecfg.h
	4.1.1 #define ENFORCE_DEFAULT_CONFIGURATION [0|1]

	4.2 General Settings of nodecfg.h
	4.2.1 #define USE_MCOP [0|1]
	4.2.2 #define CHECK_PARAMETERS [0|1]
	4.2.3 #define USE_LEDS [0|1]

	4.3 PDO Settings of nodecfg.h
	4.3.1 #define NR_OF_RPDOS [num]
	4.3.2 #define NR_OF_TPDOS [num]
	4.3.3 #define USE_EVENT_TIME [0|1]
	4.3.4 #define USE_INHIBIT_TIME [0|1]
	4.3.5 #define USE_SYNC [0|1]
	4.3.6 #define USE_DYNAMIC_PDO_MAPPING [0|1]

	4.4 NMT Service Settings of nodecfg.h
	4.4.1 #define AUTOSTART [0|1]
	4.4.2 #define DEFAULT_HEARTBEAT [ms]
	4.4.3 #define DYNAMIC_HEARTBEAT_CONSUMER [0|1], #define NR_HB_CONSUMER [num]
	4.4.4 #define USE_EMCY [0|1], #define ERROR_FIELD_SIZE [num]
	4.4.5 #define USE_NODE_GUARDING [0|1]
	4.4.6 #define USE_STORE_PARAMETERS [0|1], #define NVOL_STORE_START [num], #define NVOL_STORE_SIZE [num]
	4.4.7 #define NR_OF_SDOSERVER [num]
	4.4.8 #define USE_SLEEP [0|1]

	4.5 Other Settings of nodecfg.h
	4.5.1 #define USE_CiA447 [0|1]
	4.5.2 #define USE_SDOMESH [0/1]

	4.6 User Call-Back Functions of nodecfg.h
	4.6.1 #define USECB_NMTCHANGE [0|1]
	4.6.2 #define USECB_SYNCRECEIVE [0|1]
	4.6.3 #define USECB_RPDORECEIVE [0|1]
	4.6.4 #define USECB_ODDATARECEIVED [0|1]
	4.6.5 #define USECB_TPDORDY [0|1]
	4.6.6 #define USECB_SDOREQ [0|1]
	4.6.7 #define USECB_SDO_RD_PI [0|1]
	4.6.8 #define USECB_SDO_RD_AFTER [0|1]
	4.6.9 #define USECB_SDO_WR_PI [0|1]
	4.6.10 #define USECB_SDO_WR_AFTER [0|1]
	4.6.11 #define USECB_APPSDO_READ [0|1]
	4.6.12 #define USECB_APPSDO_WRITE [0|1]

	5 SDO Fully-Meshed Communication
	5.1 Prerequisites
	5.2 Limitations
	5.3 SDO Communication Setup
	5.4 Usage Example (With Manager Add-On)

	6 Appendix - Using Auto-Generated Sources
	6.1 File Generation
	6.2 File Integration
	6.2.1 pimg.h
	6.2.2 stackinit.h
	6.2.3 entriesandreplies.h

	7 Apendix – Advanced Manual Configuration
	7.1 RTOS Integration
	7.1.1 RTOS Task: Receive and Tick
	7.1.2 Process Image Integrity

	7.2 Object Dictionary Configuration
	7.2.1 Constant Expedited Object Dictionary Entries
	7.2.2 Variable Expedited and Mapped Object Dictionary Entries
	7.2.3 Generic Object Dictionary Entries

