

CANopen Magic Pro Library

User Manual

Manual Revision 2.42

CANopen Magic Pro Library User Manual

Page 2

Information in this document is subject to change without notice and does not represent a

commitment on the part of the manufacturer. The software described in this document is

furnished under license agreement or nondisclosure agreement and may be used or copied

in accordance with the terms of the agreement. It is against the law to copy the software on

any medium except as specifically allowed in the license or nondisclosure agreement. No

part of this manual may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or information storage and

retrieval systems, for any purpose other than the purchaser’s personal use, without prior

written permission.

Every effort was made to ensure the accuracy in this manual and to give appropriate credit

to persons, companies and trademarks referenced herein.

© Embedded Systems Academy, Inc. 2004-2016

All Rights Reserved

Microsoft® and Windows™ are trademarks or registered trademarks of Microsoft

Corporation.

PC® is a registered trademark of International Business Machines Corporation.

CANopen® is a registered trademark of CAN in Automation User's Group.

For support contact support@esacademy.com

For the latest news on CANopen Magic Pro Library visit us on the web at

www.esacademy.com

Embedded Systems Academy provides training and consulting services,

specializing in CAN, CANopen and Embedded Internetworking. For more

information visit

www.esacademy.com

mailto:support@esacademy.com
http://www.esacademy.com/
http://www.esacademy.com/
http://www.esacademy.com/
http://www.esacademy.com/
http://www.esacademy.com/

CANopen Magic Pro Library User Manual

Page 3

Contents
Contents ... 3
About This Manual .. 6
Chapter 1 – Introduction ... 7

1.1 About CANopen ... 7
1.2 About the CANopen Magic Pro Library ... 7
1.3 Package Overview .. 8

Contents.. 8
Features .. 8
Limitations ... 9

Windows Vista/7/8/10 Limitations .. 9
Windows CE 5.0 Limitations .. 9
Linux Limitations ... 9

1.4 Obtaining Compatible CAN Interfaces ... 9
Chapter 2 – Installation .. 11

2.1 Windows Installation .. 11
Minimum Requirements ... 11
Installation Procedure ... 11
Install PEAK Support ... 11

2.2 Linux Installation ... 11
Minimum Requirements ... 11
Installation Procedure ... 12

Chapter 3 – Using the Library .. 14
3.1 Overview .. 14
3.2 Adding to a Project in Windows .. 15

Microsoft Visual Studio C++ ... 15
Microsoft Visual Studio C# ... 15
Borland C++ Builder ... 16

3.3 Adding to a Project in Linux ... 16
GCC Compiler... 16

3.4 C# Notes .. 16
3.5 Calling Functions .. 17

Return Values .. 17
Other Types ... 17
Callback Functions .. 21
Typical Call Flow ... 25

3.6 Threads .. 26
3.7 Description .. 27

Overview ... 27
Start Up .. 27
Hardware Configuration ... 28
Callback Configuration ... 28
CAN Bus Operations .. 29
Shut Down ... 29

3.8 Distribution ... 29
3.9 Optimizations .. 30

Windows .. 30
Linux .. 31

CANopen Magic Pro Library User Manual

Page 4

Chapter 4 – Function Reference ... 32
4.1 CANopenDLL_Startup ... 32
4.2 CANopenDLL_Shutdown.. 33
4.3 Event_Transmit ... 34
4.4 Event_Receive ... 35
4.5 Event_MajorError ... 36
4.6 Hardware_GetCurrentTime .. 37
4.7 Hardware_AddHardware ... 38
4.8 Hardware_DeleteHardware .. 39
4.9 Hardware_EnumerateHardware ... 40
4.10 Hardware_EnumerateNetworks .. 41
4.11 Hardware_AddNetwork ... 42
4.12 Hardware_DeleteNetwork .. 43
4.13 Hardware_GetBaudrate ... 44
4.14 Hardware_Initialize .. 45
4.15 Hardware_Close ... 46
4.16 Hardware_SwitchNetworks .. 47
4.17 Hardware_Reset .. 48
4.18 Hardware_ErrorFrames ... 49
4.19 Hardware_SelfReceive .. 50
4.20 Hardware_IsNetworkFunctional .. 51
4.21 Hardware_OneShot .. 52
4.22 CANopen_SDODownload ... 53
4.23 CANopen_BroadcastSDODownload ... 54
4.24 CANopen_SDOUpload ... 56
4.25 CANopen_Cancel .. 57
4.26 CANopen_ScanNetwork ... 58
4.27 CANopen_MassExpeditedWrite ... 59
4.28 CANopen_SetSDOTimeout ... 60
4.29 CANopen_SetScanMassOperationDelay ... 61
4.30 CANopen_FindLSSSlave .. 62
4.31 CANopen_SetLSSSlaveConfig .. 63
4.32 CANopen_SetLSSSlaveBitTiming .. 64
4.33 CANopen_UseLSSSlaveBitTiming .. 65
4.34 CANopen_SetLSSTimings .. 66
4.35 CANopen_SDOChannels .. 67
4.36 CANopen_SetSDOChannelsTimeout .. 68
4.37 CANopen_SetSDOConfig ... 69
4.38 CANopen_SetBlockSegmentWriteDelay ... 70
4.39 CANopen_NMT ... 71
4.40 CANopen_SetPostTransmitDelay .. 72
4.41 CANopen_SetSDOChannel ... 73
4.42 CAN_Transmit ... 74
4.44 CANopenConfig_WriteNCF ... 76
4.45 CANopenServer_Startup ... 78
4.46 CANopenServer_Shutdown .. 79
4.47 LSSFastScan_ScanAndConfig ... 80
4.48 LSSFastScan_ScanAndConfig2 ... 82
4.49 CANopenDLL_EnumerateDrivers .. 84

CANopen Magic Pro Library User Manual

Page 5

4.50 PDO_CreateTPDO ... 85
4.51 PDO_CreateRPDO ... 86
4.52 PDO_Transmit ... 87
4.53 PDO_EventTransmitRequest .. 88
4.54 PDO_EventReceive ... 89
4.55 PDO_SetSYNCObject .. 90
4.56 PDO_SetData .. 91
4.57 PDO_DeletePDO ... 92
4.58 CANopenMonitor_SDO .. 93
4.59 CANopenMonitor_PDO .. 94
4.60 CANopenMonitor_EventHaveData ... 95
4.61 CANopenMonitor_Start.. 96
4.62 CANopenMonitor_Stop .. 97

Chapter 5 – Windows CE Driver DLL API ... 98
5.1 Introduction .. 98
5.2 API .. 98

CANopen Magic Pro Library User Manual

Page 6

About This Manual

This manual follows some set conventions with the aim of making it easier to read. The

following conventions are used:

0x Hexadecimal (base 16) values are prefixed with “0x”.

italictext Replace the text with the item it represents

[] Items inside [and] are optional

a | b a OR b may be used

… One or more items may go here.

This manual frequently uses CANopen terminology as defined by the CANopen standard

DS301 (see www.can-cia.org for more info). Readers that are not yet familiar with all the

CANopen terms may want to consider reading a book like www.canopenbook.com or the

official standard to update their knowledge on CANopen technology and terminology.

CANopen Magic Pro Library User Manual

Page 7

Chapter 1 – Introduction

1.1 About CANopen

CANopen is a higher layer protocol that runs on a CAN network. The CAN specification

defines only the physical and data link layers in the ISO/OSI 7-layer Reference Model. This

means that only the physical bus and the CAN message format is defined, but not how the

CAN messages should be used. CANopen provides an open and standardized but

customizable description of how to transfer data of different types between different CAN

nodes. This allows off the shelf CANopen compliant nodes to be purchased and plugged into

a network with the minimum of effort. It also can be used in place of an in-house

proprietary higher layer protocol development.

The development of CANopen is supervised by the CAN in Automation User's Group and is

being turned into an international standard. Use of CANopen does not require the payment

of any royalties and the specification may be expanded or altered to suit if closed networks

are being developed.

Typical applications for CANopen include:

 Commercial Vehicles

 Medical Equipment

 Maritime Electronics

 Building Automation

 Light Rail Systems

1.2 About the CANopen Magic Pro Library

The CANopen Magic Pro Library provides the necessary information and files to allow custom

applications to be built that use CANopen functionality.

The functionality of the package is provided by a DLL in Windows and a shared object in

Linux. This library can be called by any application that knows how to use it. All copies of

applications built on this platform include the library. By building upon the library an

application immediately gains access to the knowledge of CANopen that have been built up

over several years of effort. The library is a tried and tested platform that is currently used

by thousands of users worldwide.

This manual assumes familiarity with the features of CANopen. A description of the features

will not be reproduced here. Instead, please refer to the relevant CAN in Automation

specifications or the Embedded Networking with CAN and CANopen

(www.canopenbook.com) book.

Familiarity with a C or C++ development system is also assumed. This manual does not

describe any features that relate to development systems. Instead please refer to the

manual or help that came with your development system.

http://www.canopenbook.com/

CANopen Magic Pro Library User Manual

Page 8

It is recommended to read this manual completely before starting on any development

work.

1.3 Package Overview

Contents

The package contains the following:

 The CANopen library

 The C header file for the library

 The necessary support library files for the library

 An example application

 This manual that describes how to use the library

Features

The following are some of features of the CANopen library:

 Send Network Management messages to single nodes or all nodes

 Perform an SDO Download to the Object Dictionary of a node

o Expedited and segmented transfers supported

 Perform an SDO Upload from the Object Dictionary of a node

o Expedited and segmented transfers supported

 Progress callback during SDO transfers giving progress of transfer

 Option to cancel an SDO transfer in progress

 High speed network scan

o Finds all CANopen nodes on the network in less than 0.5 seconds

 High speed mass expedited writing

 Configures the CAN interface for any standard CANopen baud rate

 All received messages have a high precision timestamp

 Transmit and receive callback functions

 Major error callback function

 Change baud rate on the fly

 LSS support

 Supports block transfers

 Able to receive error frames

 Supports CiA 447 Car Add-on Devices

 Supports transmit and receive of PDOs

 Event time and inhibit time supported

 SYNC supported

 Application layer transmit approval

 Change of state detection

 Write Device Configuration Files to nodes

o Allows configuration of nodes

 Write Network Configuration Files to the network

CANopen Magic Pro Library User Manual

Page 9

o Allows configuration of all nodes at once

 Transmit and receive plain CAN messages

o CAN 2.0B and RTRs supported

 Can be used to send and receive messages at the same time as other tools using the

same library are running

o PCANopen Magic Pro can show a trace of the CAN bus during development of

applications using the library

 Supports Windows Vista/7/8/10, Windows CE 5.0 (see limitations) and Linux 2.6 with

SocketCAN

Limitations

Windows Vista/7/8/10 Limitations

If CANopenDLL_Startup has been called and the user then changes the CAN interface type

in the control panel, the list of available hardware interfaces returned from the DLL will not

change to reflect the newly selected CAN interface type. In this situation, ensure any

connections to networks are closed and call:

CANopenDLL_Shutdown();

CANopenDLL_Startup();

The list of hardware interfaces returned by the DLL will now use the new interface type.

Windows CE 5.0 Limitations

The DLL is compiled for ARMV4I processors only.

A DLL with a suitable API is required for the CAN driver being used.

This manual contains all the information needed to use the DLL. If you have questions,

please contact us at support@esacademy.com

Linux Limitations

CAN interfaces are supported using the SocketCAN framework. All interfaces that can be

operated with SocketCAN will work with the library, however, some functions such as baud

rate switching during operation may not be available. Full support is currently available for

systems with Peak CAN interfaces, the Peak 'netdev' driver installed and SocketCAN

installed and configured to use the Peak driver.

1.4 Obtaining Compatible CAN Interfaces

As mentioned in the feature list, PEAK-System Technik CAN interfaces are supported

(except for Dongle and ISA). Visit www.peak-system.com to locate the nearest distributor.

Additional CAN interfaces supported are:

 Kvaser

mailto:support@esacademy.com
http://www.peak-system.com/

CANopen Magic Pro Library User Manual

Page 10

 VSCOM NET-CAN 110

On Windows CE 5.0 any CAN interface is supported providing a DLL is written to access the

CAN interface and the DLL has a suitable API. Details of the API are provided in this manual.

CANopen Magic Pro Library User Manual

Page 11

Chapter 2 – Installation

2.1 Windows Installation

Minimum Requirements
The following is a list of the recommended minimum requirements for installing and use the

package.

 Windows Vista/7/8/10

 3Mb of disk space

 A C , C++ or .NET Development system, such as Microsoft Visual Studio 2010 or

Borland C++ Builder 5/6

 A supported CAN interface or a Windows CE 5.0 development system with a CAN

driver

Installation Procedure
Installation is very simple. Simply run the installation executable and follow the prompts.

Once installed, access to this manual, and the folders for the files and example are available

from the Start Menu. You will also need to install hardware drivers by following the

instructions from the hardware vendor. See the sections below for a description of these

steps.

Install PEAK Support
The PEAK support package must be installed before the library may be used with PEAK CAN

interfaces. Normally it will be installed automatically at the end of the CANopen Magic Pro

DLL installation.

2.2 Linux Installation

Minimum Requirements
The following is a list of the recommended minimum requirements for installing and using

the package:

 Linux with Kernel 2.6 or greater (Debian based system recommended)

 A PEAK CAN interface with driver installed

 SocketCAN installed (included in kernels after 2.6.25)

 2Mb of disk space

 gcc compiler

CANopen Magic Pro Library User Manual

Page 12

Installation Procedure
The PEAK driver and SocketCAN must be installed and working before the CANopen library

can be installed. Please contact PEAK for details on how to install and test a PEAK CAN

interface.

Verify that the PEAK driver is installed by running the following at the command prompt:

cat /proc/pcan

This will output a table showing your CAN interface. Next to check that SocketCAN is

installed and working enter the following:

ifconfig can0

If can0 is functional then information about bytes transmitted and received, errors, etc. will

be shown.

The GCC compiler must be installed. This varies depending on the Linux distribution. In

Debian based systems the following can be used (at the command prompt):

sudo apt-get update

sudo apt-get install build-essential

Unpack the installation using:

tar xzf canopendllpro-x.xx.tar.gz

where x.xx are the version numbers. This will create the directory “canopendllpro-x.xx”.

Next:

cd canopendllpro-x.xx

sudo make install

This will install the shared library on your system in /usr/lib.

To build the example application use the following:

cd gccexample

make

This will create an executable called “canopentest”. Run it with:

./canopentest

If the network is scanned and no errors are reported then the installation is complete.

CANopen Magic Pro Library User Manual

Page 13

Note that the origins of this library are as a Windows DLL. Therefore if this manual refers to

the library as a DLL it also means a shared library.

CANopen Magic Pro Library User Manual

Page 14

Chapter 3 – Using the Library

3.1 Overview

The library implements a set of functions which together provide CANopen functionality. The

following table lists the functions and what they do.

Function Description

CANopen_NMT Sends a Network Management message

CANopen_SDODownload Starts an SDO download

CANopen_BroadcastSDODownload Writing to multiple nodes at once

CANopen_SDOUpload Starts an SDO upload

CANopen_Cancel Cancels an SDO download or upload

CANopen_ScanNetwork Scans the network for CANopen nodes

CANopen_MassExpeditedWrite Performs high speed expedited write to all nodes at

once.

CANopen_SetSDOTimeout Sets the timeout to use for SDO operations.

CANopen_SetScanMassOperationDelay Sets a delay used during the network scan and mass

expedited writes to slow them down.

CANopen_FindLSSSlave Finds an LSS slave on the network

CANopen_SetLSSSlaveConfig Sets the configuration of an LSS slave

CANopen_SetLSSSlaveBitTiming Sets the bit timing of an LSS slave

CANopen_UseLSSSlaveBitTiming Instructs all LSS slaves to use bit timings

CANopen_SetLSSTimings Sets the timing information for the LSS protocol

CANopen_SDOChannels Enables/disables SDO channel requesting

CANopen_SDOChannelsTimeout Sets the timeout for SDO channel requesting

CANopen_SetSDOConfig Sets the SDO transfer configuration

CANopen_SetBlockSegmentWriteDelay Sets the delay after each SDO block is written to

control write speed

CANopen_SetPostTransmitDelay Sets a delay after transmission of each CAN

message

Hardware_GetCurrentTime Gets the current time in timestamp format

Hardware_AddHardware Adds a new CAN interface

Hardware_EnumerateHardware Lists available CAN interfaces

Hardware_EnumerateNetworks Lists available CAN networks

Hardware_AddNetwork Adds a new network

Hardware_DeleteNetwork Deletes a network

Hardware_GetBaudrate Gets the current baudrate of a network

Hardware_Initialize Initializes a CAN interface

Hardware_Close Finishes with a CAN interface

Hardware_SwitchNetworks Changes the baud rate on the fly

Hardware_Reset Resets the CAN interface

Hardware_ErrorFrames Turns on or off error frame reception

Hardware_OneShot Turns on or off one shot transmission mode

Hardware_SelfReceive Turns on and off self receive

Hardware_IsNetworkFunctional Checks if the current network is functional

Event_Transmit Registers a transmit callback function

CANopen Magic Pro Library User Manual

Page 15

Event_Receive Registers a receive callback function

Event_MajorError Registers a major error callback function

CAN_Transmit Transmits a plain CAN message

CANopenDLL_Startup Initializes the DLL

CANopenDLL_Shutdown Finishes with the DLL

CANopenConfig_WriteDCF Writes a DCF to a node

CANopenConfig_WriteNCF Writes a NCF to the network

CANopenServer_Startup Starts a minimal CANopen server

CANopenServer_Shutdown Stops the minimal CANopen server

LSSFastScan_ScanAndConfig Scans for and configures LSS Fast Scan slaves

LSSFastScan_ScanAndConfig2 Scans for and configures LSS Fast Scan slaves

CANopenDLL_EnumerateDrivers Obtains a list of supported drivers

PDO_CreateTPDO Creates a new transmit PDO

PDO_CreateRPDO Creates a new receive PDO

PDO_DeletePDO Deletes a PDO

PDO_Transmit Transmits a PDO

PDO_EventTransmitRequest Registers a PDO transmit request callback function

PDO_EventReceive Registers a PDO receive callback function

PDO_SetSYNCObject Defines the SYNC object used for PDOs

PDO_SetData Sets the data for a transmit PDO

CANopenMonitor_SDO Creates a new SDO transfer monitor

CANopenMonitor_PDO Creates a new PDO monitor

CANopenMonitor_EventHaveData Registers a callback function for a monitor

CANopenMonitor_Start Start a monitor

CANopenMonitor_Stop Stops a monitor

The rest of this chapter describes how the functions are used. The function reference

chapter lists each function in detail.

3.2 Adding to a Project in Windows

Microsoft Visual Studio C++
To use the DLL in a project:

 Make copies of the .lib file and .h file for your project

 Add the copied .lib file to the project

 Include the header file in any files that will call CANopen functions

 Copy the ESACANopenPro.dll file into the same folder as the executable

Ensure the correct .lib file is used. You must use the one from the MSVisualStudio2005

folder. Using the Borland .lib file will not work.

You must distribute the DLL with your application. Do not distribute this documentation, the

.lib or .h files.

Microsoft Visual Studio C#
To use the DLL in a project:

CANopen Magic Pro Library User Manual

Page 16

 Copy ESACANopenProCS.DLL and ESACANopenPro.DLL into the same folder as your

application executable

 Right click on the project and choose “Add Resource”

 Click on the Browse tab

 Select ESACANopenProCS.DLL and click on “OK”

Files that use the library should have the following using statement:

using ESACANopenProCS;

You must distribute both the DLLs with your application. Do not distribute this

documentation, the .lib or .h files.

Borland C++ Builder
To use the DLL in a project:

 Make copies of the .lib file and .h file for your project

 Add the copied .lib file to the project

 Include the header file in any files that will call DLL functions

 Copy the ESACANopenPro.dll file into the same folder as the executable

Ensure the correct .lib file is used. You must use the one from the BorlandC++Builder5

folder. Using the Microsoft .lib file will not work.

You must distribute the DLL with your application. Do not distribute this documentation, the

.lib or .h files.

3.3 Adding to a Project in Linux

GCC Compiler
To use the shared library in a project:

 Copy ESACANopenPro.h into the same directory as your project

 Include the header file in any files that call library functions

 When calling gcc, add the parameter -lesacanopenpro

You must distribute and install the shared DLL with your application. Do not distribute this

documentation or the .h files.

3.4 C# Notes

All enumerations and objects are in the ESACANopenProCS namespace.

Enumerations are in the top level of the namespace, for example:

CANopen Magic Pro Library User Manual

Page 17

ESACANopenProCS.enumerrorcodes code = ESACANopenProCS.enumerrorcodes.OK;

The library is broken into multiple classes, for example Event, CAN, CANopen. The function

descriptions note which class defines the function.

3.5 Calling Functions

Return Values
The RESULTS type is used for return values from API functions. It is defined as:

C/C++:

typedef struct

{

 int code;

 wchar_t details[ESACAN_MAXDETAILSLEN];

} RESULTS;

C#:

struct RESULTS

{

 enumerrorcodes code;

 string details;

}

The code indicates either success or a specific error. Depending on the error details may

contain a string describing the error.

The code may be one of:

 OK

 ERR_USERCANCELLED

 ERR_INVALIDPARAM

 ERR_PROTCOL

 ERR_HWINIT

 ERR_BUS

 ERR_TIMEOUT

 ERR_UNSUPPORTED

Other Types
The ESACAN_TIMESTAMP type is used to hold a timestamp. Timestamps are used for such

things as the current time or the time a message was received. It is defined as:

C/C++:

CANopen Magic Pro Library User Manual

Page 18

typedef struct

{

 unsigned long millis;

 unsigned int millis_overflow;

 unsigned int micros;

} ESACAN_TIMESTAMP;

C#:

struct ESACAN_TIMESTAMP

{

 UInt32 millis;

 UInt32 millis_overflow;

 UInt32 micros

}

The time is given in milliseconds with fractional microseconds.

The ESACAN_MSG type is used to hold a description of a single CAN message. It is defined

as:

C/C++:

typedef struct

{

 ESACAN_TIMESTAMP timestamp;

 unsigned int id;

 unsigned char dlc;

 unsigned char flags;

 unsigned char data[8];

} ESACAN_MSG;

C#:

struct ESACAN_MSG

{

 ESACAN_TIMESTAMP timestamp;

 UInt32 id;

 byte dlc;

 enummsgflags flags;

 byte[] data;

}

flags contains a combination of one or more of the following flags:

ESACAN_MSG_EXT - 29-bit identifer

ESACAN_MSG_RTR - RTR flag was set

ESACAN_MSG_ERRFRAME - message is an error frame

CANopen Magic Pro Library User Manual

Page 19

C# note: logically OR the flags rather than adding them.

The ESACAN_DRIVER type describes a hardware driver. It is defined as:

C/C++:

typedef struct

{

 wchar_t name[ESACAN_MAXDRIVERNAMELEN];

 wchar_t drivername[ESACAN_MAXDRIVERNAMELEN];

 unsigned char canedithardware;

 unsigned char canlistenonly;

} ESACAN_DRIVER;

C#:

struct ESACAN_DRIVER

{

 string name;

 string drivername;

 bool canedithardware;

 bool canlistenonly

}

name holds a user-friendly name of the hardware interface. drivername holds a name that

can be passed to CANopenDLL_Startup. If canedithardware is true (non-zero) then the

functions Hardware_AddHardware and Hardware_DeleteHardware need to be used to

manually add and delete the available CAN interfaces, as they cannot be automatically

discovered. If canlistenonly is true (non-zero) then some CAN interfaces can be set to

silent/listen-only mode.

The ESACAN_HARDWARE type describes a hardware interface. It is defined as:

C/C++:

typedef struct

{

 wchar_t name[ESACAN_MAXHARDWARENAMELEN];

 int handle;

} ESACAN_HARDWARE;

C#:

struct ESACAN_HARDWARE

{

 string name;

 Int32 handle;

CANopen Magic Pro Library User Manual

Page 20

}

name holds the name of the hardware interface. Handle holds a unique handle to the

interface.

The ESACAN_NETWORK type describes a network, which is associated with a specific

hardware interface. It is defined as:

C/C++:

typedef struct

{

 wchar_t name[ESACAN_MAXNETWORKNAMELEN];

 int handle;

 int baudrate;

} ESACAN_NETWORK;

C#:

struct ESACAN_NETWORK

{

 string name;

 Int32 handle;

 Int32 baudrate;

}

The name holds the name of the network. The handle holds a unique handle to the network.

The baudrate holds the speed of the network in kbps.

The ESACAN_NODEINFO type describes basic information about a node. It is defined as:

C/C++:

typedef struct

{

 unsigned char status;

 unsigned long devicetype;

} ESACAN_NODEINFO;

C#:

struct ESACAN_NODEINFO

{

 enumnodeinfo status;

 UInt32 devicetype;

}

CANopen Magic Pro Library User Manual

Page 21

The status indicates if the node has been found on the bus or not or written to or not. The

device type holds the value read from Index 1000H, subindex 00H. The status may have

one of the following values:

ESACAN_NOTFOUND - node was not found. Ignore devicetype.

ESACAN_FOUND - node was found. Read devicetype.

ESACAN_NOTWRITTEN - node was not written to.

ESACAN_WRITTEN - node was written to.

Callback Functions
The PROGRESS_CALLBACK is a function pointer type in C/C++ and a delegate in C# with

the following prototype:

C/C++:

void (__stdcall *PROGRESS_CALLBACK)(float percentage, void *callbackparam);

C#:

delegate void PROGRESS_CALLBACK(float percentage, IntPtr callbackparam);

called during operations such as SDO download, passed is the percentage of the operation

that is completed and a user defined parameter. Used for providing feedback to the user.

The FINISHED_CALLBACK is a function pointer type in C/C++ with the following prototype:

C/C++:

void (__stdcall *FINISHED_CALLBACK)(RESULTS *results, void *callbackparam);

called when an operation such as SDO download is complete. Passed is a RESULTS type

containing the result of the operation and a user defined parameter. The results code is one

of:

 OK

 ERR_PROTOCOL

 ERR_USERCANCELLED

The FINISHEDBROADCAST_CALLBACK is a function pointer type in C/C++ with the following

prototype:

C/C++:

void (__stdcall *FINISHEDBROADCAST_CALLBACK)(unsigned long completednodes,

RESULTS *results, void *callbackparam);

CANopen Magic Pro Library User Manual

Page 22

called when an operation such as broadcast SDO download is complete. Passed is a list of

nodes that were written to, a RESULTS type containing the result of the operation and a

user defined parameter. The results code is one of:

 OK

 ERR_PROTOCOL

 ERR_USERCANCELLED

The MESSAGE_CALLBACK is a function pointer type in C/C++ and a delegate in C# with the

following prototype:

C/C++:

void (__stdcall *MESSAGE_CALLBACK)(wchar_t *msg, void *callbackparam);

C#:

delegate void MESSAGE_CALLBACK(String msg, IntPtr callbackparam);

called when an operation needs to provide status messages. For example when writing a

DCF to a node this callback function will be called to indicate specific problems encountered.

Also passed is a user defined parameter.

The MAJORERROR_CALLBACK is a function pointer type in C/C++ and a delegate in C# with

the following prototype:

C/C++:

void (__stdcall *MAJORERROR_CALLBACK)(int error, void *callbackparam);

C#:

delegate void MAJORERROR_CALLBACK(enummajorerrors error, IntPtr callbackparam);

called when a major error has occurred. Passed is an error code. One of:

 MERR_NOERROR no error

 MERR_BUSOFF bus off

 MERR_OVERRUN controller rx buffer overrun

Also passed is a user defined parameter. This function is only called when the major error

changes.

The RECEIVE_CALLBACK is a function pointer type in C/C++ and a delegate in C# with the

following prototype:

C/C++:

CANopen Magic Pro Library User Manual

Page 23

typedef void (__stdcall *RECEIVE_CALLBACK)(ESACAN_MSG *msg, int reply, void

*callbackparam);

C#:

delegate void RECEIVE_CALLBACK(ref ESACAN_MSG msg, Int32 reply, IntPtr

callbackparam);

This function is called whenever a message is received. Note that the DLL receives it's own

messages, so all transmitted messages will cause this function to be called.

Reply is zero unless the message is an SDO response from a node, in which case reply is

one. Passed is a user defined parameter.

The TRANSMIT_CALLBACK is a function pointer type in C/C++ and a delegate in C# with

the following prototype:

C/C++:

typedef void (__stdcall *TRANSMIT_CALLBACK)(ESACAN_MSG *msg, void

*callbackparam);

C#:

delegate void TRANSMIT_CALLBACK(ref ESACAN_MSG msg, IntPtr callbackparam);

This function is called whenever a message is transmitted by the DLL. The timestamp is not

used in the copy of the message that is returned. Passed is a user defined parameter.

It is recommended that callback functions execute as quickly as possible to avoid causing

performance problems for the DLL.

The SWITCHNETWORKS_CALLBACK is a function pointer type in C/C++ and a delegate in

C# with the following prototype:

C/C++:

typedef int (__stdcall *SWITCHNETWORKS_CALLBACK)(int newnethandle, long pause,

void *callbackparam);

C#:

delegate Int32 SWITCHNETWORKS_CALLBACK(Int32 newnethandle, Int32 pause, IntPtr

callbackparam);

This function is called when the LSS slaves on the bus are switching to a new bit timing. It

is called when the application itself needs to switch baud rates. newnethandle is the handle

of the network the application should use, and pause is the delay in milliseconds after

switching networks before the application can transmit more messages. Also passed is a

CANopen Magic Pro Library User Manual

Page 24

user defined parameter. This function should return immediately and not wait for pause

milliseconds to pass before returning.

Note: __stdcall does not exist in Linux and can be removed from the function prototypes.

The MONITOR_CALLBACK is a function pointer type in C/C++ and a delegate in C# with the

following prototype:

C/C++:

typedef void (__stdcall *MONITOR_CALLBACK)(ESACAN_HANDLE monitorhandle,

unsigned char *data, unsigned long datasize, void * callbackparam);

C#:

delegate void MONITOR_CALLBACK(IntPtr monitorhandle, byte[] data, UInt32 datasize,

IntPtr callbackparam);

This function is called when a monitor has new data, obtained from watching for an

operation on the CAN bus. monitorhandle is the handle to the previously created monitor,

data is a pointer to the buffer originally passed to the monitor creation function, datasize is

the amount of data recorded and callbackparam is the arbitrary value passed to the DLL

when registering the callback function.

Note: __stdcall does not exist in Linux and can be removed from the function prototypes.

The PDOTXREQ_CALLBACK is a function pointer type in C/C++ and a delegate in C# with

the following prototype:

C/C++:

typedef int (__stdcall *PDOTXREQ_CALLBACK)(ESACAN_HANDLE pdohandle, void *

callbackparam);

C#:

delegate Int32 PDOTXREQ_CALLBACK(Int32 pdohandle, IntPtr callbackparam);

This function is called when a PDO is about to be transmitted due to either a change of state

or the transmission type of the PDO is zero (synchronous, device profile defined). pdohandle

is the handle of the previously created transmit PDO. Also passed is a user defined

parameter. This function should return TRUE (non-zero) to allow the PDO to be transmitted

or return FALSE (zero) to stop transmission of the PDO.

Note: __stdcall does not exist in Linux and can be removed from the function prototypes.

The PDORX_CALLBACK is a function pointer type in C/C++ and a delegate in C# with the

following prototype:

CANopen Magic Pro Library User Manual

Page 25

C/C++:

typedef void (__stdcall *PDORX_CALLBACK)(ESACAN_HANDLE pdohandle, unsigned char

*data, int length, void * callbackparam);

C#:

delegate void PDORX_CALLBACK(Int32 pdohandle, byte[] data, Int32 length, IntPtr

callbackparam);

This function is called when an asynchronous PDO has been received or a SYNC message

has been detected on a bus and a PDO is defined as being synchronous. pdohandle is the

handle of the previously created transmit PDO. Also passed is a user defined parameter.

Note: __stdcall does not exist in Linux and can be removed from the function prototypes.

Typical Call Flow
The following is a typical sequence of function calls.

Normally an applicaton will call the functions in the following order:

 CANopenDLL_EnumerateDrivers

 CANopenDLL_Startup

 start the DLL

 Event_Receive

 Event_Transmit

 Event_MajorError

 initialize callback functions

 Hardware_EnumerateHardware

 allow the user to choose from the available list of hardware

 Hardware_EnumerateNetworks

 allow the user to choose frrom the available list of networks for

the selected hardware.

 Hardware_AddNetwork

 Hardware_DeleteNetwork

 allow the user to create new networks and delete old networks

 Hardware_Initialize

 connect the application to the selected hardware and network

 Hardware_GetBaudrate

 get baudrate being used by the application

 Hardware_GetCurrentTime

 CANopen_SetSDOConfig

 Configure the SDO transfers

 If using LSS, call the LSS functions in the order described below

 If requesting SDO channels, use the functions in the order described below

 PDO_CreateTPDO / PDO_CreateRPDO

 CAN_Transmit

CANopen Magic Pro Library User Manual

Page 26

 CANopen_NMT

 CANopen_Cancel

 CANopen_SDODownload

 CANopen_SDOUpload

 CANopen_ScanNetwork

 perform operations on the CAN bus

 Hardware_Close

 disconnect the application from the network

 CANopenDLL_Shutdown

 finish using the DLL

The following is a typical sequence of function calls when using LSS:

 CANopen_SetLSSTimings

 CANopen_FindLSSSlave

 To discover a single LSS slave

 CANopen_SetLSSSlaveBitTiming

 Call for each slave on the network

 CANopen_UseLSSSlaveBitTiming

 In the SwitchNetworksFunc callback function call

Hardware_SwitchNetworks

 CANopen_SetLSSSlaveConfig

 Call for each slave on the network

The following is a typical sequence of function calls when requesting SDO channels:

 CANopenServer_Start

 CANopen_SDOChannels

 To enable requesting of SDO channels

 CANopen_SDOChannelsTimeout

3.6 Threads

Functions which do not have progress and finished callback functions passed as parameters

execute in the same thread as the function caller.

Functions which do have progress and finished callback functions as parameters are

executed in a separate thread. These are usually SDO operations which may take some time

to complete. By executing in a separate thread, the user interface can remain responsive

rather than freezing up.

All functions that have a finished callback have a non-synchronous or blocking counterpart.

This blocking version can be used in the same way as the non-blocking except that the

function does not return until the operation has completed or a timeout has occurred. It is

intended that these functions are executed in a separate thread to the user interface.

Only one function may be called at any one time in a single instance of the library. The

single exception is that CANopen_Cancel (CANopen.Cancel in C#) may be called while an

CANopen Magic Pro Library User Manual

Page 27

SDO upload, download or network scan is in progress. Normally CANopen_Cancel is called

from a progress callback function.

Multiple copies of the library may be loaded at any one time, allowing multiple parallel

operations to take place on the CAN bus. For example, when using the library and running

PCANopen Magic Pro at the same time this situation is taking place.

All callback functions are executed in a separate thread that is internal to the library.

Therefore the usual limitations and precautions apply when using data in a callback

function.

Functions that execute in a separate thread do not make copies of buffers. Therefore the

data in a buffer must remain valid and allocated until the callback function indicates the

operation has finished.

3.7 Description

Overview
In general terms, each application using the library goes through the following steps:

 Start up the library

 Configure hardware

 Register callback functions

 Use CAN bus

 Shut down the library

Because a PC may have multiple CAN interfaces connected at once, and each interface may

have the option of connecting to a range of CAN networks with different speeds, the

hardware configuration may seem confusing at first.

Once an application has finished with the library, the hardware must be closed and the

library shut down. Failure to do so may cause memory leaks.

Start Up
The function CANopenDLL_EnumerateDrivers is called to obtain a list of supported drivers.

Before using a driver make sure the corresponding DLL from the hardware vendor is

installed on the system or in the same folder as the CANopen DLL.

The function CANopenDLL_Startup is called to start the library. No other functions in the

library may be called until after this function has been called with the exception of

CANopenDLL_EnumerateDrivers.

The library may be used to allow a single process to access a CAN interface. This is the

standard arrangement. However, the library also supports multi-process access, where

multiple processes each using a copy of the library can talk to each other via a simulated

CAN bus internal to the PC, and also optionally a CAN interface. See the description of

CANopenDLL_Startup for more information.

CANopen Magic Pro Library User Manual

Page 28

Hardware Configuration
First the CAN interface must be selected. To present the user with a list,

Hardware_EnumerateHardware (Hardware.EnumerateHardware in C#) is called. This will

return a list of hardware currently found on the PC. For PEAK interfaces the list will be

limited to a type of CAN interface, for example plug and play. To change the type use the

CAN-Hardware Control Panel applet. Once changed, Hardware_EnumerateHardware will

then return a different list based on the new type.

Note that some CAN interfaces cannot be automatically discovered, for example the VSCAN

interfaces from Vision Systems. For those interfaces the function Hardware_AddHardware

must first be called to add interfaces that are known to exist. Once added

Hardware_EnumerateHardware can be called to obtain a complete list with handles.

Once the user has selected a hardware interface to use, the handle to the interface is

passed to Hardware_EnumerateNetworks (Hardware.EnumerateNetworks in C#) to obtain a

list of currently defined networks for that interface. The user then selects the network they

wish to use. If a network at the speed desired is not present, then one can be added using

Hardware_AddNetwork (Hardware.AddNetwork in C#). Also the application can delete

networks using Hardware_DeleteNetwork (Hardware.DeleteNetwork in C#).

Alternatively, the PEAK tool PCAN Netconfig (available on the Start menu after installing the

PEAK CAN Driver) can be used to add and delete networks if using PEAK interfaces.

The next step is to select the specific hardware interface and network to use. This is

achieved by calling Hardware_Initialize (Hardware.Initalize in C#).

Callback Configuration
If you wish your application to be informed of certain events, then the callback functions

must be implemented and registered. Registration is performed by calling the Event_xxxxx

functions (Event.xxxxx in C#). Callback functions may be registered or unregistered at any

time.

Callback functions must execute as quickly as possible. They execute in a thread internal to

the library, therefore the use of messages, signals, mutexs etc. is required to pass data to

the rest of your application.

All messages transmitted by the library are also received by the library. Therefore by

registering a receive callback function, it is possible to obtain the timestamp of when a

message was transmitted by the library.

All the callback functions receive a user defined parameter. This is the exact same value

that is passed to the library when the operation involving the callbacks is started. For

example if an SDO download is started and the callback parameter is set to the value 5,

then when the progress and finished callback functions are called, the parameter will have

the value 5.

This is useful for passing class instances to ensure that the callback function knows which

class instance is performing the operation.

CANopen Magic Pro Library User Manual

Page 29

Callback functions use the __stdcall calling convention. Check your compiler documentation

on how to define functions to use this calling convention.

CAN Bus Operations
SDO uploads and downloads may be performed by calling CANopen_SDOUpload

(CANopen.SDOUpload in C#) and CANopen_SDODownload (CANopen.SDODownload in C#).

Only one operation may be performed at any one time. Callback functions notify your

application of the progress and when the operation has finished. CANopen_Cancel may be

called to cancel the SDO transfer.

A high speed network scan may be performed by calling CANopen_ScanNetwork

(CANopen.ScanNetwork in C#). In order for a node to be detected by the scan, it must

implement Object Dictionary entry [1000,00], which is mandatory for all CANopen nodes.

The scan may be cancelled by calling CANopen_Cancel (CANopen.Cancel in C#).

Plain CAN messages may be transmitted by calling CAN_Transmit (CAN.Transmit in C#),

and network management messages may be transmitted by calling CANopen_NMT

(CANopen.NMT in C#).

Node and network configuration may be performed by calling CANopenConfig_WriteDCF

(CANopenConfig.WriteDCF in C#) and CANopenConfig_WriteNCF (CANopenConfig.WriteNCF

in C#). The configuration operations may be cancelled by calling CANopen_Cancel

(CANopwn.Cancel in C#).

Shut Down
Once the library is no longer needed, Hardware_Close (Hardware.Close in C#) must be

called followed by CANopenDLL_Shutdown. Once CANopenDLL_Shutdown has been called

the only library function that may be called is CANopenDLL_Startup. No other functions may

be called.

3.8 Distribution

To distribute an application based on the library in the package you need to do the

following:

 Tell users to install the driver for their CAN interface. This comes on a CD or floppy

disk or can be downloaded from www.peak-system.com.

 If using PEAK: install the PEAK redistributable on the user's PC. This came with your

copy of this package. To do this: copy all the PcanDevRedist.* and PcanDevUtils.*

into a temporary folder on the user’s PC, run PcanDevRedist.exe, delete all the files

after installation has completed.

Windows Vista/7/8/10 C/C++:

 Include ESACANopenPro.dll with your application executable, preferably in the same

folder as your application executable

http://www.peak-system.com/

CANopen Magic Pro Library User Manual

Page 30

 If using PEAK: Create the registry key HKEY_LOCAL_MACHINE\SOFTWARE\PEAK-

System\CANAPI2 (32-bit Windows) or

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\PEAK-System\CANAPI2 (64-bit

Windows) and set the key permissions to allow full access to the “everyone” group

 For any other CAN interface vendor copy the driver DLL into the same folder as your

executable

Windows CE:

 Include the driver wrapper DLL with your application executable.

Windows Vista/7/8/10 C#:

 Include ESACANopenPro.dll and ESACANopenProCS.dll with your application

executable, in the same folder as your application executable

 If using PEAK: Create the registry key HKEY_LOCAL_MACHINE\SOFTWARE\PEAK-

System\CANAPI2 (32-bit Windows) or

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\PEAK-System\CANAPI2 (64-bit

Windows) and set the key permissions to allow full access to the “everyone” group

 For any other CAN interface vendor copy the driver DLL into the same folder as your

executable

Linux:

 Include and install esacanopenpro.so as a shared library

You must not under any circumstances distribute the following:

 Any .h, .lib, .def or .exp files provided with this package

 This manual or the contents of this manual, in any format

 Any applications that allow other custom CANopen software to be developed

using the ESACANopenPro.dll or ESACANopenProCS file.

 Any source code showing the use of the ESACANopenPro.dll or

ESACANopenProCS.dll file.

Doing so will render your license to use this product invalid.

This product includes a copy if the CANAPI.DLL by PEAK System Technik. This DLL

may only be distributed freely with products generated with this package if not

used directly by the application program. Developers that wish to use the

CANAPI.DLL directly must purchase PCAN-Developer or PCAN-Evaluation from

PEAK System Technik.

3.9 Optimizations

Windows
The default configuration for the DLL is to insert a delay of 1ms after the transmission of

every message. Most of the CAN interface drivers supported, including the PEAK driver,

CANopen Magic Pro Library User Manual

Page 31

have adequate buffer handling, making this delay unnecessary. To eliminate the delay call

the following in your application:

C/C++:

CANopen_SetPostTransmitDelay(0);

C#:

CANopen canopen = new CANopen();

canopen.SetPostTransmitDelay(0);

Linux
The default configuration for SocketCAN set up a small number of transmit buffers. This

means that the ESACANopenPro library has to insert a 1ms delay after transmission of

every message to ensure there will always be a free transmit buffer.

This delay can be eliminated if the number of transmit buffers is increased. To increase the

transmit buffers:

ifconfig can0 txqueuelen 300

where 300 is the number of new transmit buffers. Note that this must be executed after

every reboot, unless a startup script is created for the Linux distribution to set this up

automatically.

Next eliminate the transmit delay by calling the following in your application:

CANopen_SetPostTransmitDelay(0);

CANopen Magic Pro Library User Manual

Page 32

Chapter 4 – Function Reference

4.1 CANopenDLL_Startup

Prototype:

 C/C++:

void CANopenDLL_Startup(int mode, wchar_t *drivername);

 C#:

void CANopenDLL_Startup(enumoperationmodes mode, String

drivername);

Params:

 mode = ESACAN_SINGLEPROCESS or ESACAN_MULTIPROCESS

drivername = name of driver to use. Examples:

"CanApi2.dll" = PEAK CAN interfaces driver

“SOCKETCAN” = Linux SocketCAN interface

Desc:

Starts up the DLL. Must be called before any other function in the DLL. There

are three configurations possible:

 One process using CAN interface:

Pass ESACAN_SINGLEPROCESS and the driver name.

 Multiple processes using same CAN interface:

Pass ESACAN_MULTIPROCESS and the driver name. The driver name

must be the same for all processes.

 Multiple processes, no CAN interface (simulation only):

Pass ESACAN_MULTIPROCESS, "" for the driver name. The driver

name must be the same for all processes.

In order for the multi-process system to work, ESACANServer.exe must be

first copied to the same folder as ESACANopenPro.DLL.

Note: CanAPI2.dll and SOCKETCAN only support ESACAN_SINGLEPROCESS,

as multi-application support is provided by the PEAK system.

Returns:

 Nothing

C# Class:

ESACANopenPro

CANopen Magic Pro Library User Manual

Page 33

4.2 CANopenDLL_Shutdown

Prototype:

 C/C++:

void CANopenDLL_Shutdown(void);

 C#:

void CANopenDLL_Shutdown();

Params:

 None

Desc:

Shuts down the DLL when the application has finished using it. Must be the

last function called.

Returns:

 Nothing

C# Class:

 ESACANopenPro

