

PCANopen Inspector

User Manual

Manual Revision 1.00

PCANopen Inspector User Manual

Page 2

Information in this document is subject to change without notice and does not represent a
commitment on the part of the manufacturer. The software described in this document is
furnished under license agreement or nondisclosure agreement and may be used or copied
in accordance with the terms of the agreement. It is against the law to copy the software on
any medium except as specifically allowed in the license or nondisclosure agreement. No
part of this manual may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than the purchaser’s personal use, without prior
written permission.

Every effort was made to ensure the accuracy in this manual and to give appropriate credit
to persons, companies and trademarks referenced herein.

© PEAK-System Technik GmbH and Embedded Systems Academy, Inc. 2006-2009
All Rights Reserved

Microsoft® and Windows™ are trademarks or registered trademarks of Microsoft
Corporation.
PC® is a registered trademark of International Business Machines Corporation.

For support contact support@esacademy.com

For the latest news on PCANopen Inspector visit PEAK-System Technik at

www.peak-system.com

PCANopen Inspector was developed for PEAK-System Technik by Embedded
Systems Academy. Embedded Systems Academy provides training and consulting
services, specializing in CAN, CANopen and Embedded Internetworking. For more
information visit

www.esacademy.com

PCANopen Inspector User Manual

Page 3

Contents
Contents ...3
About This Manual..6
Chapter 1 – Introduction ...7
1.1 About CANopen ...7
1.2 About PCANopen Inspector..7
1.3 PCANopen Inspector Features..8
1.4 Obtaining Compatible CAN Interfaces ...10

Chapter 2 – Installation and Setup ...11
2.1 Installation..11
Minimum Requirements...11
Installation Overview ..11
Install CAN Interface Driver ...11
Install PCANopen Inspector..11
Install CAN Professional Driver ...12
Activate PCANopen Inspector ...12

2.2 Setup ...12
Configuring PCANopen Inspector ..12
Configuring the Inspector Support Module ...14
Network Setup ...14

Chapter 3 – User Interface ..15
3.1 Quick Tour ..15
3.2 Test List ...16
Run All Tests and Cancel All Tests...16
Test Order ...16
Test Configuration, Window and Run...16
Test Status ..16

Chapter 4 - Configuration..17
4.1 Test Configuration..17
4.2 Network Configuration ..18
Nodes ...18
Network Description..18

4.3 Inspector Support Module Configuration ...19
4.4 Node Configuration ..20

Chapter 5 – Tests...21
5.1 General Information ...21
5.2 Resetting ..21
5.3 Test Cycles ...21
5.4 TPDO Sync Test ...21
Description ..21
Manual Test ...22
Automatic Limits Test..22
CiA TR-308 Performance Test...23

5.5 TPDO Sync + RPDOs Test ...23
Description ..23
Manual Test ...24
Automatic Limits Test..24
CiA TR-308 Performance Test...25

PCANopen Inspector User Manual

Page 4

5.6 TPDO Event Test..25
Description ..25
Manual Test ...26
Automatic Limits Test..26
CiA TR-308 Performance Test...26

5.7 TPDO Event + RPDOs Test ..27
Description ..27
Manual Test ...28
Automatic Limits Test..28
CiA TR-308 Performance Test...28

5.8 PDO Turnaround Test ...29
Description ..29
Manual Test ...30
Automatic Limits Test..31
CiA TR-308 Performance Test...31

5.9 PDO Analysis Test ..32
Description ..32

5.10 Object Dictionary Scan Test...32
Description ..32

Chapter 6 – Expressions..33
6.1 Overview ..33
6.2 Components..33
Variables ...33
Constants ..35
Operators ..35

6.3 Rules..36
Integral Conversion ..36
Integer Promotion ..36
Operator Precedence...36
Operator Associativity ...37

6.4 Limitations ..37
6.5 Reference ...37

Chapter 7 – Overall Ratings...38
7.1 Overview ..38
7.2 Script Structure ...38
7.3 Example Script ..39
7.4 Python Reference...41
Inspector Module..41
Inspector Constants ..41
Inspector Types..42
Device Summary ..42
OD Scan Test ...47
PDO Analysis Test...47
TPDO Sync, TPDO Sync + RPDOs, TPDO Event, TPDO Event + RPDOs and PDO
Turnaround..49

Chapter 8 – Test Reports ..52
8.1 Overview ..52
8.2 Format ...52
8.3 Generation and Viewing..52

PCANopen Inspector User Manual

Page 5

8.4 Verification..52
Appendix A – CXL Reference..54
A.1 File Format ...54
Header and Footer ..54
XML Tag ..54
CXL Tag - Version ...54
CXL Tag - Author ..54
CXL Tag - Date...54
Number Bases..54
Case ...55
Formatting...55

A.2 objectdictionary...55
nodeid...55
entry...56

A.3 network..59
message..59
abortcode ..60
errorcode...60
node ...61
devicetype ...63
vendor ..64

A.4 processdata ..66
data..66

A.5 comments...69
A.6 Example File ...69

PCANopen Inspector User Manual

Page 6

About This Manual

This manual follows some set conventions with the aim of making it easier to read. The
following conventions are used:

0x Hexadecimal (base 16) values are prefixed with “0x”.
italictext Replace the text with the item it represents
[] Items inside [and] are optional
a | b a OR b may be used
… One or more items may go here.

This manual frequently uses CANopen terminology as defined by the CANopen standard
DS301 (see www.can-cia.org for more info). Readers that are not yet familiar with all the
CANopen terms may want to consider reading a book like www.canopenbook.com or the
official standard to update their knowledge on CANopen technology and terminology.

PCANopen Inspector User Manual

Page 7

Chapter 1 – Introduction

1.1 About CANopen

CANopen is a higher layer protocol that runs on a CAN network. The CAN specification
defines only the physical and data link layers in the ISO/OSI 7-layer Reference Model. This
means that only the physical bus and the CAN message format is defined, but not how the
CAN messages should be used. CANopen provides an open and standarized but
customizable description of how to transfer data of different types between different CAN
nodes. This allows off the shelf CANopen compliant nodes to be purchased and plugged into
a network with the minimum of effort. It also can be used in place of an in-house
proprietory higher layer protocol development.

The development of CANopen is supervised by the CAN in Automation User's Group and is
being turned into an international standard. Use of CANopen does not require the payment
of any royalties and the specification may be expanded or altered to suit if closed networks
are being developed.

Typical applications for CANopen include:

� Commercial Vehicles
� Medical Equipment
� Maritime Electronics
� Building Automation
� Light Rail Systems

1.2 About PCANopen Inspector

PCANopen Inspector is a professional grade CANopen node testing tool. By running a suite
of configurable tests, the performance and reliability of a CANopen node may be
determined. Multiple aspects of the performance of the node may be measured under
different situations with and without simulated background traffic and warnings or errors
generated when specific user configurable conditions occur. In addition, automated test
modes allow PCANopen Inspector to find the limits of a node's performance, allowing
precise characterization of the node.

The CAN in Automation Performance Test (CiA TR-308) is implemented in PCANopen
Inspector, providing a standardized means of testing nodes.

In comparison to the official CiA CANopen conformance test, the PCANopen
Inspector is a compatibility and performance test. Where the official
conformance test checks if all expected responses are given, the Inspector
adds detailed timing information. CANopen devices that pass the conformance
test may still be inoperable if for example timeouts are used differently.
With PCANopen Inspector one can measure the maximum timeouts and delays that
occur within a CANopen device.

PCANopen Inspector User Manual

Page 8

PCANopen Inspector is a complex application, and it is strongly recommended that

this manual be read in it's entirety before using it. Without understanding how the

tests operate, the results obtains may be inaccurate or meaningless.

Note that the timestamps used for calculations are accurate to 50 microseconds.

1.3 PCANopen Inspector Features

The following is a list of features in PCANopen Inspector. The list is not exhaustive by any
means, but does give a good overview of the abilities of PCANopen Inspector.

� Measures various parameters of a node
� SDO minimum response time
� SDO maximum response time
� Average SDO response time
� Difference in SDO response times
� Minimum TPDO response/event time (SYNC, event and turnaround)
� Maximum TPDO response/event time (SYNC, event and turnaround)
� Difference in TPDO response/event times (SYNC, event and turnaround)
� Deviation in TPDO event time
� Heartbeat minimum event time
� Heartbeat maximum event time
� Heartbeat event time deviation
� Node Guarding minimum response time
� Node Guarding maximum response time
� Difference in Node Guarding response time
� Minimum bootup time
� Maximum bootup time
� Average bootup time

� Determines various features of the node
� Device Type
� Vendor information
� Layer Setting Services support
� PDO linking and mapping functionality
� Number of supported RPDOs and TPDOs
� Number of SDO servers and clients
� NMT Master implemented
� SDO Manager implemented
� Configuration Manager implemented
� Autostart supported
� SYNC consumer or producer
� Heartbeat consumer or produder
� Node Guarding supported
� Ability to store parameters
� Emergency consumer or producer

� Ability to configure the node before each test from a Device Configuration File
� Option to describe the node on the network, along with Electronic Datasheets

PCANopen Inspector User Manual

Page 9

� Generates customizable compatability, performance and reliability ratings
� Uses a scripting language for complete customization

� Network Description File, compatible with PCANopen Magic Pro
� Written in XML based CANopen eXchange Language and describes the network
� Symbolic information from the files are used where applicable
� Allows description of customized node Object Dictionaries

� Generate detailed test reports with enough information to reproduce the tests
� Validates previously generated test response as genuine
� Save and load test configurations
� Implements the CAN in Automation Performance Test (CiA TR-308)
� OD Scan Test
� Scan the Object Dictionary Communication Profile area for supported entries
� Shows current entry values
� Shows SDO access time for each entry

� PDO Analysis Test
� Shows currently implemented PDOs
� Shows Read/write access information for PDO communication and mapping

parameters
� Shows supported PDO transmission types
� Shows current communication and mapping values for each PDO

� TPDO Sync Test
� Measures response time of synchronous TPDOs
� Configurable sync periods
� Works with the alarm system and automatic limits testing
� Optionally generate background traffic according to CiA TR-308

� TPDO Sync with RPDOs Test
� Measures response time of synchronous TPDOs while receiving RPDOs
� RPDOs may be configured
� Configurable sync periods
� Works with the alarm system and automatic limits testing
� Optionally generate background traffic according to CiA TR-308

� TPDO Event test
� Measures the event time of event driven TPDOs
� Configurable event periods
� Works with the alarm system and automatic limits testing
� Optionally generate background traffic according to CiA TR-308

� TPDO Event with RPDOs Test
� Measures the event time of event driven TPDOs while receiving RPDOs
� RPDOs may be configured
� Configurable event periods
� Works with the alarm system and automatic limits testing
� Optionally generate background traffic according to CiA TR-308

� PDO Turnaround Test
� Measures the PDO turnaround time
� Two phases of RPDOs configurable to ensure stimulation of the node
� Configurable RPDO transmission periods
� Works with the alarm system and automatic limits testing
� Optionally generate background traffic according to CiA TR-308

� Configurable alarm system

PCANopen Inspector User Manual

Page 10

� Generate a warning or error for tests when specific situations occur, such as
timings outside of allowed limits

� Expressions used to describe complex rules for when a alarm occurs
� Powerful automatic limits testing
� Automatically find the limits of a node for any timing aspect
� Provides detailed information on the limitations of a node
� Expressions used to describe complex limits

� Output log showing execution times and progress of tests
� Automatically remembers window positions and settings, hardware and network

configurations
� Works with PEAK's PCAN-USB CAN interface
� Can run at the same time, on the same CAN network as other compatible tools,

including PCANExplorer, PCANView and PCANopen Magic Pro

1.4 Obtaining Compatible CAN Interfaces

The PEAK PCAN-USB CAN interface is supported. Visit www.peak-system.com to locate the
nearest distributor.

Use of other PEAK CAN interfaces is not recommended.

PCANopen Inspector User Manual

Page 11

Chapter 2 – Installation and Setup

2.1 Installation

Minimum Requirements
The following is a list of the recommended minimum requirements for running PCANopen
Inspector.

� Pentium III 866MHz
� Windows 95
� Pointing device (mouse, trackball, etc.)
� 5Mb of disk space
� 64Mb of RAM

Installation Overview
Installation is a four part process. The following steps must be completed to install
PCANopen Inspector:

� Install CAN Interface Driver
� Install PCANopen Inspector
� Install CAN Professional Driver
� Activate PCANopen Inspector

If you have already installed PCANopen Inspector and you are upgrading to a new version,
then you normally only need to install PCANopen Inspector itself. I.e. the drivers only need
to be uninstalled and reinstalled if they have been updated.

The PCANopen Inspector installation wizard can combine steps two to four into one easy
step.

Install CAN Interface Driver
The CAN driver for the interface is supplied with the interface itself on disk or CD.
Alternatively, drivers may be downloaded from the PEAK System Technik web site at
www.peak-system.com.

Follow the instructions supplied with the interface to install.

Install PCANopen Inspector
To install PCANopen Inspector, simply run the installation executable. An installation wizard
will guide you through the steps necessary to install the software. When the activation page
is shown, enter the activation code you were supplied with from the place you purchased
your copy of PCANopen Inspector. Enter your name and company name. If you did not
receive an activation code, contact the place where you purchased the software.

PCANopen Inspector User Manual

Page 12

At one point in the installation wizard you will be given the option of also installing the CAN
Professional Driver. If you choose to do this (the CAN Professional driver must be installed
to use PCANopen Inspector) then a separate installation wizard for the driver will
automatically run when PCANopen Inspector has finished installing.

Install CAN Professional Driver
The best way to install the CAN Professional driver is to select the option to install it during
installation of PCANopen Inspector.

Follow the prompts in the installation wizard to install the driver.

Note that the CAN Professional driver installation is separate from the PCANopen Inspector
installation. Uninstalling PCANopen Inspector will not uninstall the CAN Professional driver.
Instead you must seperately uninstall the CAN Professional driver if you wish to remove it.

Activate PCANopen Inspector
Each copy of PCANopen Inspector needs a valid activation code in order to run. An
activation code usually consists of around 14 to 16 letter and numbers. If you did not
receive an activation code with your copy of PCANopen Inspector, then contact the place
where you purchased your copy and ask for one.

To activate your copy, enter the activation code during the PCANopen Inspector installation
when prompted. If you are installing over a previous version then you may find that the
code has already been filled in for you.

2.2 Setup

Configuring PCANopen Inspector
Each time you run PCANopen Inspector, the hardware configuration window will open.

1. Hardware Configuration Window

Clicking on "Configure Hardware" will display a window that allows configuration of the CAN
interface to use.

PCANopen Inspector User Manual

Page 13

2. CAN Interface Properties Window

Select the category of your interface, for example, PCI for PCI cards, USB for USB interfaces
and Peakcan for parallel port (printer port) dongles. Some hardware, such as parallel port
dongles must be added by clicking on the "Add" button and entering the settings that apply
to your PC.

Make sure your CAN interface is highlighted and click the "OK" button. The Hardware
Configuration window should now show your selected interface.

Once a CAN interface has been selected, the bottom part of the Hardware Configuration
window will contain a drop-down list of currently available networks. For each network the
CAN baud rate is shown. If you do not see a network for the baud rate you wish to use,
then click on the "Add Network" button. The Add Network window will be displayed.

3. Add Network Window

Enter a name for the network and select a baud rate. Click on the "Add" button. Your new
network should now be displayed in the Network Configuration window.

PCANopen Inspector automatically remembers networks you add. If you wish to delete a
network, then simply select it and click on the "Delete Network" button.

PCANopen Inspector User Manual

Page 14

Once you have completed the Hardware Configuration, click on the "OK" button to start
using PCANopen Inspector.

If you wish to use other PEAK Professional development tools at the same time as
PCANopen Inspector, then you will need to select the same network in all the applications.

Configuring the Inspector Support Module
When PCANopen Inspector is running, the Inspector Support Module (ISM) must be
connected to the CAN bus. However, the Inspector Support Module may not be configured
for the correct baud rate of the CAN bus in use. To configure the ISM follow the steps in the
configuration wizard. The wizard may be accessed several ways:

� Click on the Configure Inspector Support Module button on the toolbar
� Choose "Configure Inspector Support Module…" from the Options menu

Ensure that the node ID of the ISM does not conflict with the device under test (DUT).

Network Setup
When PCANopen Inspector is running, there must be only two nodes connected to the CAN
bus.

� The device under test (DUT)
� The Inspector Support Module (ISM)

Connecting additional nodes may interfere with the operations of the tests and

produce incorrect results.

PCANopen Inspector User Manual

Page 15

Chapter 3 – User Interface

4. The Main Window

3.1 Quick Tour

The main window is divided into three sections. The top left section is titled "Device
Summary" and shows various information obtained during the course of the testing. As the
information is discovered it is filled in. The top right section is titled "Test List" and provides
a configurable list of the tests, along with various buttons to control the tests. The bottom
section is the message log. As the tests run messages appear in the log. The log is included
in generated test reports.

When individual tests are run, the device summary is not reset. Instead the information is
added to by results from the individual tests. When a group of tests is run, the device
summary is reset.

Across the top are the usual menus and a toolbar for quick access to some of the features.
Hovering the pointer over a toolbar button will display a hint describing the functionality of
the button.

The window may be resized and the dividers dividing the three sections may be dragged
around to resize the individual sections.

PCANopen Inspector User Manual

Page 16

3.2 Test List

The test list shows all the available tests that can be run along with various buttons that can
control the test and some information on the test status.

Run All Tests and Cancel All Tests
Next to each test name is a checkbox. By checking the check box the test will be run when
the "Run All Tests" button is clicked. The tests will be run in the same order that they are
listed in the window, starting with the test at the top.

To stop the current test or to stop the current group of tests, click on the "Cancel All Tests"
button. The current test status will indicate "Cancelled".

Test Order
The purple arrows change the order in which the tests will be run. Tests can be moved up
and down the list by clicking on the up and down arrows next to the test that is to be
moved.

Test Configuration, Window and Run
To the right of each test name is a set of three buttons. The first button opens the
configuration window for that test. The second button opens the results window for the test,
showing detailed information. The third button runs that test individually.

In the test windows the progress bar, status, configuration, cancel and run buttons are
reproduced, allowing the test to be completely controlled from the test window.

Test Status
Below each test name is a progress bar and test status. While a test is running the progress
bar displays how much of the test has completed. The test status shows such information as
"Running", "Warning" and "Failed".

PCANopen Inspector User Manual

Page 17

Chapter 4 - Configuration

4.1 Test Configuration

The test configuration window may be accessed by several different methods:

� Clicking on the configuration button of an individual test in the Test List
� Clicking on the "Configure the tests" button on the toolbar
� Choosing "Configure Tests…" from the Options menu
� Clicking on the configuration button in a test window

5. Test Configuration Window

In this window the configuration of any test along with the global test configuration may be
accessed. Simply choose the desired test or the global configuration from the drop down list
at the top of the window. If the window was opened by clicking on the configuration button
of an individual test in the test list, then the window will automatically select the
configuration of that test to display.

To use the Embedded Systems Academy, Inc. recommended defaults, simply click on the
"Use Recommended Defaults" button at the bottom.

Clicking on "Cancel" will ignore all changes that have been made since opening the window.

PCANopen Inspector User Manual

Page 18

Clicking on "OK" will accept the changes made. If there are any errors or problems in the
selected configurations then messages will appear.

4.2 Network Configuration

The network configuration window may be accessed by several methods:

� Clicking on the "Configure the network" button on the toolbar
� Choosing "Configure Network…" from the Options menu

6. Network Configuration Window

The network configuration window allows the entry of a description for the whole network.
Even though only one node may be connected to the CAN bus at any one time (along with
the ISM), it is possible to describe all nodes in one go.

Nodes
To edit a node description, click on the "Nodes" tab and click on the "Edit" button for the
desired node. In the node configuration window that appears, enter the name of the node
and select the Electronic Datasheet file (EDS) or Device Configuration File (DCF) for the
node to specify the Object Dictionary. The Object Dictionary is used in the OD Scan test.

To remove a node description, click on the "Edit" button and then erase the node name and
path to the EDS or DCF file in the node configuration window.

Network Description
A network may be described using a CANopen eXchange Language (CXL) file, which is an
XML based file format. Currently CXL files are used by PCANopen Magic Pro, PCANopen
Magic ProDS and other applications. The file may describe the nodes on the network and
their Object Dictionaries, along with custom messages, device types, etc.

PCANopen Inspector User Manual

Page 19

By clicking on the "Network Description" tab a CXL file may be specified. Once selected,
PCANopen Inspector will use information from the file when needed. Examples of when the
information is used are:

� Displaying details of the device type read from the node
� Displaying the vendor information for the node
� Displaying the node name
� Displaying the names of Object Dictionary entries discovered in the node

Information entered under the "Nodes" tab overrides any information in the CXL file.

Note that not all information in the CXL file is used by PCANopen Inspector. For a complete
description of the file format and the information it contains, refer to appendix A.

4.3 Inspector Support Module Configuration

The Inspector Support Module (ISM) is a support node used by PCANopen Inspector to
implement the tests. In order for PCANopen Inspector to operate, the Inspector Support
Module must be connected to the CAN bus along with the device under test (DUT).

The ISM remembers the last baud rate and node ID it was configured to, therefore it will be
necessary from time to time to change these parameters to suit the network currently being
used. In order to change the parameters, the ISM configuration wizard is used. The wizard
may be accessed by several different methods:

� Clicking on the "Configure Inspector Support Module" button on the toolbar
� Choosing "Configure Inspector Support Module…" from the Options menu

7. ISM Configuration Window

To configure the ISM simply follow the steps in the wizard.

PCANopen Inspector User Manual

Page 20

4.4 Node Configuration

A Device Configuration File (DCF) may be written to the node before the start of every test
cycle. This is useful if the node resets into a default state with some functionality such as
PDOs disabled.

To specify the DCF to write to the node:

� Click on the Configure the Tests button on the toolbar or choose "Configure Tests…"

from the Options menu
� Select "Global Configuration" from the drop-down list at the top of the dialog window
� Check the option "Configure node after each reset"
� Click on "Browse…" and select the DCF file to use
� Click on "OK"

PCANopen Inspector User Manual

Page 21

Chapter 5 – Tests

5.1 General Information

Tests will attempt to configure enabled RPDOs and TPDOs to match the test being
performed. For example, in the TPDO Sync test, the test will attempt to configure all
enabled TPDOs to have a transmission type of 0x01 (transmit on reception of every Sync
message).

Tests will not enable any TPDOs or RPDOs that are disabled. If the node has all
TPDOs disabled after reset then most of the tests will not work (note that the node will be
reset at the start of every test cycle). Instead the node must be configured with a Device
Configuration File (DCF) after every reset. PCANopen Inspector can do this automatically
and the procedure to enable this feature is described in Chapter 4.

In the following sections each test is described in turn.

5.2 Resetting

To reset all test data, test states, and the log, choose Reset from the Data menu or click on
the Reset toolbar button.

5.3 Test Cycles

Many of the tests implement test cycles. A cycle is an individual run of the test with specific
settings, and a test may comprise multiple test cycles. The length of time a test cycle runs
for is determined by the settings. The relationship is shown in the following table.

Event Time or Sync Period Test Cycle Run Time
Greater than 5 seconds Event time or sync period times 6
1 second to 5 seconds 20 seconds
100ms to 1 second 10 seconds
less than 100ms 4 seconds

5.4 TPDO Sync Test

Description
One Sync period is used per test cycle. The Sync message ID is configurable.

At the start of each test cycle the error control of the node is configured. If heartbeats are
supported then the node is configured to generate a heartbeat every 100ms. If heartbeats
are not supported and node guarding is supported, then the node is configured to use node
guarding, with a guard time of 100ms and a life time factor of 5.

PCANopen Inspector User Manual

Page 22

The columns in the results table will show either the heartbeat response times and deviation
from 100ms, or the node guarding response times and difference.

The TPDO Sync test configures all enabled TPDOs in the node for transmission type 0x01
(transmit on reception of every SYNC) if needed. If PCANopen Inspector fails to configure a
TPDO then the test will fail.

The node is placed in Operational mode.

If node guarding is being used then the ISM will start transmitting node guarding requests
to the node.

Sync messages will be transmitted by the ISM periodically according to the Sync period for
the test cycle. During the test cycle, three SDO read accesses are made from the ISM to
index 0x1800, subindex 0x01 every 400ms.

At the end of the test cycle the results are analysed and displayed. The times between the
SYNC and the transmission of the TPDOs are measured and displayed.

If node guarding was being used and any responses were not received or the toggle bit was
not toggled, then a warning will be generated. If heartbeats were being used and no
heartbeats were received then a warning will be generated.

If not all the SDO request and/or responses for access to index 0x1800, subindex 0x01
were seen during the test cycle, then a warning will be generated.

If not all the enabled TPDOs were transmitted after each Sync message or too many were
transmitted, then a warning will be generated.

Manual Test
The manual version of the TPDO Sync test may be enabled or disabled as desired. When
enabled, it is possible to enter exactly which Sync periods should be tested. They are tested
in order, allowing the node to be pushed harder and harder up or even beyond the
necessary performance level. Simply enter the desired Sync periods into the box, one per
line.

At the end of each test cycle, if the alarm option is enabled then the test results for the test
cycle are placed in the variables, and the alarm expression is evaluated. It is possible to
generate a warning, generate an error or cancel the test if the expression evaluates to true.
For more information on expressions, refer to the expressions chapter.

Automatic Limits Test
The automatic limits version of the TPDO Sync test may be enabled or disabled as desired.
When enabled the test automatically generates test cycles to find a limit in the performance
of a node. A modified binary search algorithm is used.

PCANopen Inspector User Manual

Page 23

The start and end ranges for the Sync period are entered along with an expression defining
the limit to find. The test then searches for the shortest Sync period where the expression
becomes true inside the range. For more on expressions, refer to the expressions chapter.

The automatic limits test may be enabled at the same time as the manual test. The
automatic limits test will start when the manual test has finished.

CiA TR-308 Performance Test
It is possible to run the TPDO Sync test in accordance with the CAN in Automation (CiA)
Technical Report 308 (TR-308) Performance Test. The report specifies that timing
measurements are taken while specific simulated background traffic appears on the bus.

The background traffic is divided into four types:

� Error Control traffic
� SDO traffic
� PDO traffic
� Sync traffic

Each group may be individually turned on or off by checking the relevant box. It is
recommended that TR-308 is read before using this mode and the limitations of the test are
fully understood. The limitations are:

� The device under test (DUT) and the ISM must not have one of the following as node

IDs: 3, 5, 8, 12, 13, 32, 35, 43, 57, 90
� The device under test must not use any IDs that are in the default connection set of

nodes 3, 5, 8, 12, 13, 32, 35, 43, 57, 90
� The device under test must not respond to Sync ID 0x080.

5.5 TPDO Sync + RPDOs Test

Description
One Sync period is used per test cycle. The Sync message ID is configurable.

At the start of each test cycle the error control of the node is configured. If heartbeats are
supported then the node is configured to generate a heartbeat every 100ms. If heartbeats
are not supported and node guarding is supported, then the node is configured to use node
guarding, with a guard time of 100ms and a life time factor of 5.

The columns in the results table will show either the heartbeat response times and deviation
from 100ms, or the node guarding response times and difference.

The TPDO Sync test configures all enabled TPDOs and RPDOs in the node for transmission
type 0x01 (transmit on reception of every SYNC/actuate on reception of every SYNC) if
needed. If PCANopen Inspector fails to configure a TPDO or RPDO then the test will fail.

The node is placed in Operational mode.

PCANopen Inspector User Manual

Page 24

If node guarding is being used then the ISM will start transmitting node guarding requests
to the node.

Sync messages will be transmitted by the ISM periodically according to the Sync period for
the test cycle. After each Sync message RPDOs will be transmitted to the node with
configurable data. During the test cycle, three SDO read accesses are made from the ISM to
index 0x1800, subindex 0x01 every 400ms.

At the end of the test cycle the results are analysed and displayed. The times between the
SYNC and the transmission of the TPDOs are measured and displayed.

If node guarding was being used and any responses were not received or the toggle bit was
not toggled, then a warning will be generated. If heartbeats were being used and no
heartbeats were received then a warning will be generated.

If not all the SDO request and/or responses for access to index 0x1800, subindex 0x01
were seen during the test cycle, then a warning will be generated.

If not all the enabled TPDOs were transmitted after each Sync message or too many were
transmitted, then a warning will be generated.

Note that the first set of RPDO data will be transmitted with an ID of the first enabled RPDO
in the node, the second set transmitted with an ID of the second enabled RPDO, etc.

Manual Test
The manual version of the TPDO Sync test may be enabled or disabled as desired. When
enabled, it is possible to enter exactly which Sync periods should be tested. They are tested
in order, allowing the node to be pushed harder and harder up or even beyond the
necessary performance level. Simply enter the desired Sync periods into the box, one per
line.

At the end of each test cycle, if the alarm option is enabled then the test results for the test
cycle are placed in the variables, and the alarm expression is evaluated. It is possible to
generate a warning, generate an error or cancel the test if the expression evaluates to true.
For more information on expressions, refer to the expressions chapter.

Automatic Limits Test
The automatic limits version of the TPDO Sync test may be enabled or disabled as desired.
When enabled the test automatically generates test cycles to find a limit in the performance
of a node. A modified binary search algorithm is used.

The start and end ranges for the Sync period are entered along with an expression defining
the limit to find. The test then searches for the shortest Sync period where the expression
becomes true inside the range. For more on expressions, refer to the expressions chapter.

PCANopen Inspector User Manual

Page 25

The automatic limits test may be enabled at the same time as the manual test. The
automatic limits test we start when the manual test has finished.

CiA TR-308 Performance Test
It is possible to run the TPDO Sync test in accordance with the CAN in Automation (CiA)
Technical Report 308 (TR-308) Performance Test. The report specifies that timing
measurements are taken while specific simulated background traffic appears on the bus.

The background traffic is divided into four types:

� Error Control traffic
� SDO traffic
� PDO traffic
� Sync traffic

Each group may be individually turned on or off by checking the relevant box. It is
recommended that TR-308 is read before using this mode and the limitations of the test are
fully understood. The limitations are:

� The device under test (NUT) and ISM must not have one of the following as node

IDs: 3, 5, 8, 12, 13, 32, 35, 43, 57, 90
� The device under test must not use any IDs that are in the default connection set of

nodes 3, 5, 8, 12, 13, 32, 35, 43, 57, 90
� The device under test must not respond to Sync ID 0x080.

5.6 TPDO Event Test

Description
One event time is used per test cycle.

At the start of each test cycle the error control of the node is configured. If heartbeats are
supported then the node is configured to generate a heartbeat every 100ms. If heartbeats
are not supported and node guarding is supported, then the node is configured to use node
guarding, with a guard time of 100ms and a life time factor of 5.

The columns in the results table will show either the heartbeat response times and deviation
from 100ms, or the node guarding response times and difference.

The TPDO Event test optionally configures all enabled TPDOs in the node for transmission
type 0xFE (manufacturer defined) or 0xFF (device profile defined, asynchronous change of
state transmission) and the event time for the test cycle if needed. If PCANopen Inspector
fails to configure a TPDO then the test will fail.

The node is placed in Operational mode.

If node guarding is being used then the ISM will start transmitting node guarding requests
to the node.

PCANopen Inspector User Manual

Page 26

During the test cycle, three SDO read accesses are made from the ISM to index 0x1800,
subindex 0x01 every 400ms.

At the end of the test cycle the results are analysed and displayed. The times between the
transmission of the TPDOs are displayed.

If node guarding was being used and any responses were not received or the toggle bit was
not toggled, then a warning will be generated. If heartbeats were being used and no
heartbeats were received then a warning will be generated.

If not all the SDO request and/or responses for access to index 0x1800, subindex 0x01
were seen during the test cycle, then a warning will be generated.

If not all the enabled TPDOs were transmitted during each event period or too many were
transmitted, then a warning will be generated.

Manual Test
The manual version of the TPDO Event test may be enabled or disabled as desired. When
enabled, it is possible to enter exactly which event times should be tested. They are tested
in order, allowing the node to be pushed harder and harder up or even beyond the
necessary performance level. Simply enter the desired event times into the box, one per
line.

At the end of each test cycle, if the alarm option is enabled then the test results for the test
cycle are placed in the variables, and the alarm expression is evaluated. It is possible to
generate a warning, generate an error or cancel the test if the expression evaluates to true.
For more information on expressions, refer to the expressions chapter.

Automatic Limits Test
The automatic limits version of the TPDO Event test may be enabled or disabled as desired.
When enabled the test automatically generates test cycles to find a limit in the performance
of a node. A modified binary search algorithm is used.

The start and end ranges for the event times are entered along with an expression defining
the limit to find. The test then searches for the shortest event time where the expression
becomes true inside the range. For more on expressions, refer to the expressions chapter.

The automatic limits test may be enabled at the same time as the manual test. The
automatic limits test we start when the manual test has finished.

CiA TR-308 Performance Test
It is possible to run the TPDO Event test in accordance with the CAN in Automation (CiA)
Technical Report 308 (TR-308) Performance Test. The report specifies that timing
measurements are taken while specific simulated background traffic appears on the bus.

The background traffic is divided into four types:

PCANopen Inspector User Manual

Page 27

� Error Control traffic
� SDO traffic
� PDO traffic
� Sync traffic

Each group may be individually turned on or off by checking the relevant box. It is
recommended that TR-308 is read before using this mode and the limitations of the test are
fully understood. The limitations are:

� The device under test (DUT) and ISM must not have one of the following as node

IDs: 3, 5, 8, 12, 13, 32, 35, 43, 57, 90
� The device under test must not use any IDs that are in the default connection set of

nodes 3, 5, 8, 12, 13, 32, 35, 43, 57, 90

5.7 TPDO Event + RPDOs Test

Description
One event time is used per test cycle.

At the start of each test cycle the error control of the node is configured. If heartbeats are
supported then the node is configured to generate a heartbeat every 100ms. If heartbeats
are not supported and node guarding is supported, then the node is configured to use node
guarding, with a guard time of 100ms and a life time factor of 5.

The columns in the results table will show either the heartbeat response times and deviation
from 100ms, or the node guarding response times and difference.

The TPDO Event test optionally configures all enabled TPDOs and RPDOs in the node for
transmission type 0xFE (manufacturer defined) or 0xFF (device profile defined,
asynchronous change of state transmission) and the event time for the test cycle (TPDOs
only) if needed. If PCANopen Inspector fails to configure a TPDO or RPDO then the test will
fail.

The node is placed in Operational mode.

If node guarding is being used then the ISM will start transmitting node guarding requests
to the node.

During the test cycle, three SDO read accesses are made from the ISM to index 0x1800,
subindex 0x01 every 400ms. The RPDOs are transmitted periodically with a period matching
the event time.

At the end of the test cycle the results are analysed and displayed. The times between the
transmission of the TPDOs are displayed.

PCANopen Inspector User Manual

Page 28

If node guarding was being used and any responses were not received or the toggle bit was
not toggled, then a warning will be generated. If heartbeats were being used and no
heartbeats were received then a warning will be generated.

If not all the SDO request and/or responses for access to index 0x1800, subindex 0x01
were seen during the test cycle, then a warning will be generated.

If not all the enabled TPDOs were transmitted during each event period or too many were
transmitted, then a warning will be generated.

Manual Test
The manual version of the TPDO Event test may be enabled or disabled as desired. When
enabled, it is possible to enter exactly which event times should be tested. They are tested
in order, allowing the node to be pushed harder and harder up or even beyond the
necessary performance level. Simply enter the desired event times into the box, one per
line.

At the end of each test cycle, if the alarm option is enabled then the test results for the test
cycle are placed in the variables, and the alarm expression is evaluated. It is possible to
generate a warning, generate an error or cancel the test if the expression evaluates to true.
For more information on expressions, refer to the expressions chapter.

Automatic Limits Test
The automatic limits version of the TPDO Event test may be enabled or disabled as desired.
When enabled the test automatically generates test cycles to find a limit in the performance
of a node. A modified binary search algorithm is used.

The start and end ranges for the event times are entered along with an expression defining
the limit to find. The test then searches for the shortest event time where the expression
becomes true inside the range. For more on expressions, refer to the expressions chapter.

The automatic limits test may be enabled at the same time as the manual test. The
automatic limits test we start when the manual test has finished.

CiA TR-308 Performance Test
It is possible to run the TPDO Event test in accordance with the CAN in Automation (CiA)
Technical Report 308 (TR-308) Performance Test. The report specifies that timing
measurements are taken while specific simulated background traffic appears on the bus.

The background traffic is divided into four types:

� Error Control traffic
� SDO traffic
� PDO traffic
� Sync traffic

PCANopen Inspector User Manual

Page 29

Each group may be individually turned on or off by checking the relevant box. It is
recommended that TR-308 is read before using this mode and the limitations of the test are
fully understood. The limitations are:

� The device under test (DUT) and ISM must not have one of the following as node

IDs: 3, 5, 8, 12, 13, 32, 35, 43, 57, 90
� The device under test must not use any IDs that are in the default connection set of

nodes 3, 5, 8, 12, 13, 32, 35, 43, 57, 90

5.8 PDO Turnaround Test

Description
The PDO Turnaround test assumes that the node is configured such that reception of an
RPDO will result in transmission of one or more TPDOs. The time between the reception of
an RPDO and the transmission of the corresponding TPDOs is the TPDO response time.

The node must be configured either by physically connecting inputs to outputs or
implementing a logical connection between RPDOs and TPDOs in the application layer.

One RPDO transmission period is used per test cycle. Two phases of RPDOs can be
configured. By placing different data in each phase, data received by the node can be
continually changed, causing stimulation of the node. Each test cycle is divided up into sub-
cycles. There is one sub-cycle for each RPDO supported by the node.

In a sub-cycle the RPDO is transmitted periodically. First the RPDO from phase 1 is
transmitted followed by the RPDO from phase 2. The RPDO from phase 1 is then
transmitted again and the process repeats until the end of the sub-cycle.

This results in the following pattern:

RPDO1 – phase 1
RPDO1 – phase 2
… repeated
RPDO 2 – phase 1
RPDO 2 – phase 2
… repeated
RPDO 3 – phase 1
RPDO 3 – phase 2
… repeated

The length of a sub-cycle is the length of the test cycle divided by the number of RPDOs
supported by the node.

At the start of each test cycle the error control of the node is configured. If heartbeats are
supported then the node is configured to generate a heartbeat every 100ms. If heartbeats
are not supported and node guarding is supported, then the node is configured to use node
guarding, with a guard time of 100ms and a life time factor of 5.

PCANopen Inspector User Manual

Page 30

The columns in the results table will show either the heartbeat response times and deviation
from 100ms, or the node guarding response times and difference.

The PDO Turnaround test optionally configures all enabled TPDOs and RPDOs in the node for
transmission type 0xFE (manufacturer defined) or 0xFF (device profile defined,
asynchronous change of state transmission). If PCANopen Inspector fails to configure a
TPDO or RPDO then the test will fail.

The node is placed in Operational mode.

If node guarding is being used then the ISM will start transmitting node guarding requests
to the node.

During the test cycle, three SDO read accesses are made from the ISM to index 0x1800,
subindex 0x01 every 400ms. The RPDOs are transmitted periodically with a period matching
the event time.

At the end of the test cycle the results are analysed and displayed. The times between the
transmission of an RPDO and the transmission of TPDOs is displayed.

If node guarding was being used and any responses were not received or the toggle bit was
not toggled, then a warning will be generated. If heartbeats were being used and no
heartbeats were received then a warning will be generated.

If not all the SDO request and/or responses for access to index 0x1800, subindex 0x01
were seen during the test cycle, then a warning will be generated.

If no TPDOs were transmitted during each event period then a warning will be generated.

Manual Test
The manual version of the PDO Turnaround test may be enabled or disabled as desired.
When enabled, it is possible to enter exactly which RPDO transmission periods should be
tested. They are tested in order, allowing the node to be pushed harder and harder up or
even beyond the necessary performance level. Simply enter the desired event times into the
box, one per line.

At the end of each test cycle, if the alarm option is enabled then the test results for the test
cycle are placed in the variables, and the alarm expression is evaluated. It is possible to
generate a warning, generate an error or cancel the test if the expression evaluates to true.
For more information on expressions, refer to the expressions chapter.

In order for PCANopen Inspector to know which TPDOs should be transmitted for a specific
RPDO, the first test cycle in the test is used to record what was returned by the node for
each RPDO. For each subsequent test cycle the number of TPDOs returned is compared to
previous test cycles for any difference. Any differences will generate warning. The RPDO
transmission period for the first test cycle should, therefore, be long enough for all TPDOs to
be transmitted within the RPDO transmission period.

PCANopen Inspector User Manual

Page 31

Automatic Limits Test
The automatic limits version of the PDO Turnaround test may be enabled or disabled as
desired. When enabled the test automatically generates test cycles to find a limit in the
performance of a node. A modified binary search algorithm is used.

The start and end ranges for the RPDO transmission periods are entered along with an
expression defining the limit to find. The test then searches for the shortest RPDO
transmission period where the expression becomes true inside the range. For more on
expressions, refer to the expressions chapter.

The automatic limits test may be enabled at the same time as the manual test. The
automatic limits test we start when the manual test has finished.

In order for PCANopen Inspector to know which TPDOs should be transmitted for a specific
RPDO, the first test cycle in the test is used to record what was returned by the node for
each RPDO. For each subsequent test cycle the number of TPDOs returned is compared to
previous test cycles for any difference. Any differences will generate warning. The RPDO
transmission period for the first test cycle should, therefore, be long enough for all TPDOs to
be transmitted within the RPDO transmission period.

CiA TR-308 Performance Test
It is possible to run the TPDO Event test in accordance with the CAN in Automation (CiA)
Technical Report 308 (TR-308) Performance Test. The report specifies that timing
measurements are taken while specific simulated background traffic appears on the bus.

The background traffic is divided into four types:

� Error Control traffic
� SDO traffic
� PDO traffic
� Sync traffic

Each group may be individually turned on or off by checking the relevant box. It is
recommended that TR-308 is read before using this mode and the limitations of the test are
fully understood. The limitations are:

� The device under test (DUT) and ISM must not have one of the following as node

IDs: 3, 5, 8, 12, 13, 32, 35, 43, 57, 90
� The device under test must not use any IDs that are in the default connection set of

nodes 3, 5, 8, 12, 13, 32, 35, 43, 57, 90

PCANopen Inspector User Manual

Page 32

5.9 PDO Analysis Test

Description
The PDO Analysis test reads in the current configuration of the TPDOs and RPDOs in the
node and displays the result in a table. A test is performed to determine supported
transmission types.

The access (read only, read/write) is determined for the communication parameters and
mapping and displayed in the table.

� (RO) = read only
� (RW) = read/write
� (X) = error reading entry

5.10 Object Dictionary Scan Test

Description
The Object Dictionary Scan test scans the Communication Profile area of the Object
Dictionary. The results are shown in the table along with the current data in the entry in
ASCII, hexadecimal and decimal and the SDO response time for the entry.

Names for the Object Dictionary entries are either obtained from an internal database, or
read from the Network Description File.

PCANopen Inspector User Manual

Page 33

Chapter 6 – Expressions

6.1 Overview

Expressions are a way of representing mathematical formulas. PCANopen Inspector uses
expressions in several places to allow a high degree of configurability using a standard,
compact notation.

Expressions in PCANopen Inspector have the same syntax as C programming language
expressions, and implement a subset of the functionality present in C.

Examples:

msgrate > 52.4
(tpdodiff <= 41) || (tpdomin > 6.2)
(syncdev > 101.2 && (msgrate != 45)) || syncdev > 106.3

In many cases an expression is evaluated and the result is checked to see whether it is true
or false. For example in the alarms feature an expression is evaluated after each test cycle.
If the expression is true then the alarm is signalled and the action chosen (i.e. generate
warning) occurs.

If the result of an expression is zero, then the result is regarded as false.
If the result of an expression is non-zero (1, 5.6, -3, etc.) then the result is regarded as
true.

6.2 Components

An expression is made up of the following components. Not all components must be present
to create a valid expression.

� Variables
� Constants
� Operators

Each component is describe in turn in the following sections.

Variables
PCANopen Inspector defines a collection of variables. The values of these variables are
updated at the end of each test cycle before the expression is evaluated. The value of the
variables are shown in the test window for that cycle. Not all tests define values for all the
variables, and sometimes the value of a variable will be undefined.

Variable names are case sensitive.

PCANopen Inspector User Manual

Page 34

Variable: tpdomin
Type: float
Description: The minimum TPDO event or response time in ms

Variable: tpdomax
Type: float
Description: The maximum TPDO event or response time in ms

Variable: tpdodiff
Type: float
Description: The difference in TPDO event or response time in ms

Variable: tpdodev
Type: float
Description: The deviation in TPDO event or response times in %

Variable: tpdoave
Type: float
Description: The average TPDO event or response times in ms

Variable: ecmin
Type: float
Description: The minimum Node Guarding response time or Heartbeat event time in ms

Variable: ecmax
Type: float
Description: The maximum Node Guarding response time or Heartbeat event time in ms

Variable: ecdiff
Type: float
Description: The different in Node Guarding response times or Heartbeat event times in

ms

Variable: ecdev
Type: float
Description: The deviation in Node Guarding response times or Heartbeat event times in %

Variable: sdomin
Type: float
Description: The minimum SDO response time in ms

Variable: sdomax
Type: float
Description: The maximum SDO response time in ms

Variable: syncmin
Type: float
Description: The minimum SYNC event time in ms

PCANopen Inspector User Manual

Page 35

Variable: syncmax
Type: float
Descripton: The maximum SYNC event time in ms

Variable: syncdev
Type: float
Description: The deviation in SYNC event times in %

Constants
Constants are values written directly into expressions and are most commonly used in a
comparison with a variable. Constants may be in decimal (base 10), octal (base 8) or
hexadecimal (base 16). Decimal values may be integers or floating point and may be
negative or positive.

Octal numbers are prefixed with a zero and may only contain the digits zero to seven.

Hexadecimal numbers are prefixed with "0x" or "0X" and may only contain the characters
zero to nine and A to F.

Three suffixes may be used with constants to force them to a specific type.

U unsigned (no negative values)
L long (32-bit)
F float (32-bit)

By default any integers are of type int (16-bit) and any real numbers are of type double
(64-bit).

Operators
Operators either perform a comparison between two values (either or both of which can be
a variable or constant) or they take one or two values and produce a result.

Unary Operators
These operators work on one value that is to the right of the operator. Standard C operator
precedence and associativity is used. If in doubt, use parenthesis.

! NOT
~ One's complement

Binary Operators
These operators work on the values either side of the operator. Standard C operator
precedence and associativity is used. If in doubt, use parenthesis.
Comparison operations (i.e. <, >) generate a result of 1 for true and 0 for false.

* Multiplication
/ Division
% Modulus

PCANopen Inspector User Manual

Page 36

+ Addition
- Subtraction
<< Shift left
>> Shift right
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to
!= Not equal to
& Bitwise AND
^ Bitwise XOR
| Bitwise OR
&& Logical AND
|| Logical OR

Special Characters

(Open parenthesis
) Close parenthesis

6.3 Rules

Integral conversion, integer promotion, operator associativity and operator precedence are
implemented in the expression system. These are standard C programming language ideas,
and are implemented in the same way as they are in C.

Integral Conversion
When a binary operator needs to operate on two values of different types, one of the types
must be converted to match the other. In general the smallest common type that can hold
both values in use is used.

Integer Promotion
If an int type can hold the value of a char typed value, then the char typed value is
converted to an int.

Operator Precedence
Consider the following expression:

4 * 2 + 5

What is the value of this expression? Is it 13 or 28? Operator precedence is a method of
ensuring that the result is always known by giving a priority to operators. In the C
programming language (and therefore this expression system), the multiplication operator

PCANopen Inspector User Manual

Page 37

has a higher priority (or precedence) than the addition operator. The result therefore is
always 13.

Using parenthesis ("(" and ")") the order the operators are processed can be forced. To give
a result of 28 for the previous example, it must be written as:

4 * (2 + 5)

Anything inside parenthesis is processed first. Parenthesis can be nested, for example:

4 + (4 * (2 + 5))

The expression will evaluate to 32.

There is no penalty for using parenthesis, so if in doubt about the order of operator
precedence, use parenthesis.

Operator Associativity
Associativity defines the ordering that the expression is processed in. Consider the following
expression

4 + 2 – 1

Because the associativity of the addition and subtraction operators is left to right, first 4 and
2 are added to give 6, then 1 is subtracted from 6 to give the result.

Unary operators have right associativity, and always process what is to the right of them.

To override associativity use parenthesis as described in the previous section.

6.4 Limitations

The expressions are limited to a total of 200 operators, variable names and parenthesis.
The expressions are limited to a total of 300 characters.

6.5 Reference

For more information on C expressions, especially integral conversion and integer promotion
see "The C Programming Language", 2nd Ed., Kernighan and Ritche, Prentice Hall.

PCANopen Inspector User Manual

Page 38

Chapter 7 – Overall Ratings

7.1 Overview

The overall ratings sum up the performance of a node into a collection of results. These
ratings may be used to compare nodes and set a criteria for whether a node should be used
or not.

The ratings are:

Compatability: How compatible is the node in it's implementation of the
CANopen protocol? Result is a value in the range 0 – 100

Performance: How closely does the node match the desired performance

requirements? Result is a value in the range 0 –100

Reliability: Were all necessary tests passed? Result is a value in the range
0 – 100

Because the calculation of these parameters is highly dependant on the specific node and
requirements that are to be met, it is not possible to provide one generic method of
calculating these values. Therefore after each test or all tests have finished executing a
script is run to calculate the values.

The ratings script is written in a language called Python and can be accessed in the
configuration window, under "Global Configuration".

7.2 Script Structure

The script must import the "Inspector" module, gain access to the device summary and fill
in the "compatabilityrating", "reliabilityrating" and "performancerating" values. The following
illustrates a skeleton script.

import Inspector
ds = Inspector.DeviceSummary()
ds.compatibilityrating = 0
ds.reliabilityrating = 0
ds.performancerating = 0
print 'Ratings generation complete'

Any print commands appear in the log, allowing additional data (for example the results of
calculations) to be performed at the end of testing and included in the test report.

PCANopen Inspector User Manual

Page 39

7.3 Example Script

The following is an example script that can be used as the basis for a more complex
customized version.

this script calculates the compatibility,
performance and reliability ratings

import Inspector

ds = Inspector.DeviceSummary()

calculate compatibility rating - look for
minimum od entry
if Inspector.ODScan().status != Inspector.NOTSTARTED:
 if Inspector.ODScan().status == Inspector.PASSED and \
 Inspector.ODScanEntry(0x1000, 0x00).found and \
 Inspector.ODScanEntry(0x1001, 0x00).found and \
 Inspector.ODScanEntry(0x1018, 0x00).found and \
 Inspector.ODScanEntry(0x1018, 0x01).found:
 ds.compatibilityrating = 100
 print "Compatibility check passed (100%)"
 else:
 ds.compatibilityrating = 0
 print "Compatibility check failed (0%)"

calculate reliability rating - look for all
enabled tests were passed
reliability_max = 0
if Inspector.ODScan().status != Inspector.NOTSTARTED:
 reliability_max += 10
if Inspector.PDOAnalysis().status != Inspector.NOTSTARTED:
 reliability_max += 10
if Inspector.TPDOSync().status != Inspector.NOTSTARTED:
 reliability_max += 10
if Inspector.TPDOSyncRPDOs().status != Inspector.NOTSTARTED:
 reliability_max += 10
if Inspector.TPDOEvent().status != Inspector.NOTSTARTED:
 reliability_max += 10
if Inspector.TPDOEventRPDOs().status != Inspector.NOTSTARTED:
 reliability_max += 10
if Inspector.PDOTurnaround().status != Inspector.NOTSTARTED:
 reliability_max += 10

reliability_act = 0
if reliability_max > 0:
 if Inspector.ODScan().status == Inspector.PASSED:
 reliability_act += 10
 if Inspector.PDOAnalysis().status == Inspector.PASSED:

PCANopen Inspector User Manual

Page 40

 reliability_act += 10
 if Inspector.TPDOSync().status == Inspector.PASSED:
 reliability_act += 10
 if Inspector.TPDOSyncRPDOs().status == Inspector.PASSED:
 reliability_act += 10
 if Inspector.TPDOEvent().status == Inspector.PASSED:
 reliability_act += 10
 if Inspector.TPDOEventRPDOs().status == Inspector.PASSED:
 reliability_act += 10
 if Inspector.PDOTurnaround().status == Inspector.PASSED:
 reliability_act += 10

 ds.reliabilityrating = 100 * reliability_act / reliability_max
 print "Reliability rating at %d%%" % ds.reliabilityrating

calculate performance rating
performance_max = 0
performance_act = 0
if ds.heartbeat100ms_hasdata:
 performance_max += 10
 if ds.heartbeat100ms_dev < 20:
 performance_act += 10
if ds.nodeguarding100ms_hasdata:
 performance_max += 10
 if ds.nodeguarding100ms_diff < 40:
 performance_act += 10
if ds.eventtpdo100ms_hasdata:
 performance_max += 10
 if ds.eventtpdo100ms_dev < 40:
 performance_act += 10
if ds.eventtpdo10ms_hasdata:
 performance_max += 10
 if ds.eventtpdo10ms_dev < 20:
 performance_act += 10
if ds.synctpdo100ms_hasdata:
 performance_max += 10
 if ds.synctpdo100ms_diff < 40:
 performance_act += 10
if ds.synctpdo10ms_hasdata:
 performance_max += 10
 if ds.synctpdo10ms_diff < 20:
 performance_act += 10
if ds.bootup_hasdata:
 performance_max += 10
 if ds.bootup_max < 50:
 performance_act += 10
if ds.sdoresponse_hasdata:
 performance_max += 10
 if ds.sdoresponse_max < 10:

PCANopen Inspector User Manual

Page 41

 performance_act += 10

if performance_max > 0:
 ds.performancerating = 100 * performance_act / performance_max
 print "Performance rating at %d%%" % ds.performancerating

print 'Ratings generation complete'

7.4 Python Reference

This quick reference describes the custom objects that are defined in Python to access
information in the application. For a language reference see the free ebook "Dive into
Python" at www.diveintopython.org.

Abbreviations used:

 RO = read only
 RW = read/write
 WO = write only

Inspector Module
All Inspector functionality is contained in the Inspector module. Import it before using with:

 import Inspector

The Inspector module defines constants and types that are described below.

Inspector Constants
The Inspector constants for test status are:

 NOTSTARTED
 RUNNING
 PASSED
 WARNING
 FAILED
 CANCELLED

The Inspector constants for Object Dictionary entry accessiblity are:

 UNKNOWN
 READONLY
 READWRITE
 UNTESTED

The constants may be accessed as follows:

PCANopen Inspector User Manual

Page 42

 Inspector.PASSED
 Inspector.READWRITE

Inspector Types
There are one or two types for each test available in the application, and a type for the
device summary. The device summary type may be used to read any current device
summary data, or set many of the values. The test types can access the test status,
whether the test is enabled or not and the number of test cycles (if applicable).
In addition, for tests that have multiple test cycles, there is a test cycle type, which allows
access to the results of individual test cycles.

The following sections describe these types.

Device Summary
The device summary type allows read/write access to the device summary. For example:

 ds = Inspector.DeviceSummary()
 ds.reliabilityrating = 5

or:

 Inspector.DeviceSummary().reliabilityrating = 5

to set the reliability rating. Boolean values (shown in the main window as yes or no) are
treated in Python as integers with the values 0 (for no) and 1 (for yes).

List of properties defined:

 devicetype
 Device type. RW

 vendor
 Vendor ID. RW

 nodeid
 Node ID. RW

 baudrate
 Baud rate in kbps. RW

 bootuptime
 Bootup time in ms. RW

 nmtmaster
 NMT master. 0 (no) or 1 (yes). RW

 sdomanager

PCANopen Inspector User Manual

Page 43

 SDO manager. 0 (no) or 1 (yes). RW

 configmanager
 Configuration manager. 0 (no) or 1 (yes). RW

 autostart
 Auto start. 0 (no) or 1 (yes). RW

 lss
 Layer setting services. 0 (no) or 1 (yes). RW

 rpdonum
 Number of RPDOs. RW

 tpdonum
 Number of TPDOs. RW

 pdolinking
 PDO linking. 0 (no) or 1 (yes). RW

 pdomapping
 PDO mapping. 0 (no) or 1 (yes). RW

 syncconsumer
 Sync consumer. 0 (no) or 1 (yes). RW

 syncproducer
 Sync producer. 0 (no) or 1 (yes). RW

 heartbeatconsumer
 Heartbeat consumer. 0 (no) or 1 (yes). RW

 heartbeatproducer
 Heartbeat producer. 0 (no) or 1 (yes). RW

 nodeguarding
 Node guarding. 0 (no) or 1 (yes). RW

 storeparameters
 Store parameters. 0 (no) or 1 (yes). RW

 emcyconsumer
 Emergency consumer. 0 (no) or 1 (yes). RW

 emcyproducer
 Emergency producer. 0 (no) or 1 (yes). RW

 sdoclientnum
 Number of SDO clients. RW

PCANopen Inspector User Manual

Page 44

 sdoservernum
 Number of SDO servers. RW

 bootup_min
 Minimum bootup time in ms. RO

 bootup_max
 Maximum bootup time in ms. RO

 bootup_average
 Average bootup time in ms. RO

 bootup_numtries
 Number of bootups requested. RO

 bootup_total
 Total number of bootups. RO

 bootup_hasdata
 Indicates if any bootup data has been recorded. 0 (no) or 1 (yes). RO

 sdoresponse_min
 Minimum SDO response time in ms. RO

 sdoresponse_max
 Maximum SDO response time in ms. RO

 sdoresponse_average
 Average SDO response time in ms. RO

 sdoresponse_numtries
 Number of SDO requests sent. RO

 sdoresponse_total
 Total SDO responses. RO

 sdoresponse_hasdata
 Indicates if any sdo response data has been recorded. 0 (no) or 1 (yes). RO

 heartbeat100ms_min
 Minimum 100ms heartbeat time in ms. RO

 heartbeat100ms_max
 Maximum 100ms heartbeat time in ms. RO

 heartbeat100ms_dev
 100ms heartbeat deviation. RO

PCANopen Inspector User Manual

Page 45

 heartbeat100ms_hasdata
 Indicates if any 100ms heartbeat data has been recorded. 0 (no) or 1 (yes). RO

 nodeguarding100ms_min
 Minimum 100ms node guarding time in ms. RO

 nodeguarding100ms_max
 Maximum 100ms node guarding time in ms. RO

 nodeguarding100ms_diff
 100ms node guarding difference. RO

 nodeguarding100ms_hasdata
 Indicates if any 100ms node guarding data has been recorded. 0 (no) or 1 (yes). RO

 eventtpdo100ms_min

Minimum 100ms TPDO event time in ms. RO

eventtpdo100ms_max
Maximum 100ms TPDO event time in ms. RO

eventtpdo100ms_dev
100ms TPDO event time deviation. RO

eventtpdo100ms_ave
100ms TPDO event time average.RO

 eventtpdo100ms_hasdata
Indicates if any 100ms TPDO event time data has been recorded. 0 (no) or 1 (yes).
RO

eventtpdo10ms_min
Minimum 10ms TPDO event time in ms. RO

eventtpdo10ms_max
Maximum 10ms TPDO event time in ms. RO

eventtpdo10ms_dev
10ms TPDO event time deviation. RO

eventtpdo10ms_ave
10ms TPDO event time average. RO

 eventtpdo10ms_hasdata
Indicates if any 10ms TPDO event time data has been recorded. 0 (no) or 1 (yes).
RO

synctpdo100ms_min
Minimum 100ms TPDO sync time in ms. RO

PCANopen Inspector User Manual

Page 46

synctpdo100ms_max
Maximum 100ms TPDO sync time in ms. RO

synctpdo100ms_diff
100ms TPDO sync time difference. RO

synctpdo100ms_ave
100ms TPDO sync time average. RO

 synctpdo100ms_hasdata
Indicates if any 100ms TPDO sync time data has been recorded. 0 (no) or 1 (yes).
RO

synctpdo10ms_min
Minimum 10ms TPDO sync time in ms. RO

synctpdo10ms_max
Maximum 10ms TPDO sync time in ms. RO

synctpdo10ms_diff

 10ms TPDO sync time difference. RO

 synctpdo10ms_ave
` 10ms TPDO sync time average. RO

 synctpdo10ms_hasdata
 Indicates if any 10ms TPDO sync time data has been recorded. 0 (no) or 1 (yes). RO

maxbusload

 Maximum bus load. RW

 maxburstlength
 Maximum burst length. RW

 peakmessagerate
 Peak message rate. RW

 compatibilityrating
 Compatibility rating. RW

 performancerating
 performance rating. RW

 reliabilityrating
 Reliability rating. RW

PCANopen Inspector User Manual

Page 47

OD Scan Test
The ODScan type allows access to the results of the test and status:

 test = Inspector.ODScan()
 s = test.status

List of properties defined:

 status

Test status. One of the values described in the Inspector Constants section. RO

enabled
0 (for disabled) or 1 (for enabled). RO

The ODScanEntry type allows access to the details of a specific OD entry. Passed is the
entry index and subindex:

 odentry = Inspector.ODScanEntry(0x1000, 0x00)
f = odentry.found

List of properties defined:

 index

OD entry index. RO

 subindex

OD entry subindex. RO

 found

0 (not found) or 1 (found). RO

 size

Size of OD entry data. RO

 accesstime

Access time in ms. RO

 value

Value of entry if four bytes or less. RO

PDO Analysis Test
The PDOAnalysis type allows access to the results of the test and status:

 test = Inspector.PDOAnalysis()
 s = test.status

List of properties defined:

PCANopen Inspector User Manual

Page 48

 status
 Test status. One of the values described in the Inspector Constants section. RO

 enabled
 0 (for disabled) or 1 (for enabled). RO

The PDOAnalysisPDO type allows access to the details of a specific PDO. Passed is the index
of the PDO communication parameters:

 pdo = Inspector.PDOAnalysisPDO(0x1800)
 i = pdo.index

List of properties defined:

 index
 PDO communication parameters OD entry index. RO

 found
 0 (not found) or 1 (found). RO

 transtype
 Transmission type. RO

 inhibittime
 Inhibit time. RO

 eventtime
 Event time. RO

 mappingnum
 Number of mapping entries. RO

 cobidaccess

Access type for cobid. One of the values defined in the Inspector Constants section.
RO

 transtypeaccess

Access type for transmission type. One of the values defined in the Inspector
Constants section. RO

 inhibittimeaccess

Access type for inhibit time. One of the values defined in the Inspector Constants
section. RO

 eventtimeaccess

Access type for event time. One of the values defined in the Inspector Constants
section. RO

PCANopen Inspector User Manual

Page 49

 mappingnumaccess
Access type for mapping number. One of the values defined in the Inspector
Constants section. RO

 mapping(n)

Returns the mapping value for mapping number n. n is 1-indexed. The value
returned has the format (all values are big-endian):

 <index><subindex><length>

TPDO Sync, TPDO Sync + RPDOs, TPDO Event, TPDO Event
+ RPDOs and PDO Turnaround
All of these tests have largely the same properties defined in their types. Some tests may
not implement all properties. To see what is and isn't implemented, view the window for
each test.

To access to the results of the test and status:

 test = Inspector.TPDOSync()
 s = test.status

List of properties defined:

 status
 Test status. One of the values described in the Inspector Constants section. RO

 enabled
 0 (for disabled) or 1 (for enabled). RO

 cycles
 Number of test cycles. RO

Replace TPDOSync with TPDOSyncRPDOs, TPDOEvent, TPDOEventRPDOs or PDOTurnaround
for the other tests.

To access the details of a specific test cycle, passed is the 1-indexed cycle number:

 testcycle = Inspector.TPDOSyncCycle(1)
 testcycle.time

List of properties defined:

 cycle
 Cycle number. RO

 time
 Event time or sync time. RO

PCANopen Inspector User Manual

Page 50

 tpdo_min
 TPDO minimum time. RO

 tpdo_max
 TPDO maximum time. RO

 tpdo_diff
 TPDO min, max time difference. RO

 tpdo_dev
 TPDO min, max time deviation. RO

 tpdo_ave
 TPDO average time. RO

 ec_min
 Heartbeat or node guarding minimum time. RO

 ec_max
 Heartbeat or node guarding maximum time. RO

 ec_diff
 Heartbeat or node guarding min, max time difference. RO

 ec_dev
 Heartbeat or node guarding min, max time deviation. RO

 sdo_min
 SDO minimum time. RO

 sdo_max
 SDO maximum time. RO

 sync_min
 Sync minimum time. RO

 sync_max
 Sync maximum time. RO

 sync_dev
 Sync min, max time deviation. RO

 peakmsgrate
 Peak message rate reached during test cycle. RO

 maxbusload
 Maximum bus load during test cycle. RO

PCANopen Inspector User Manual

Page 51

 maxburstlen
 Maximum burst length during test cycle. RO

Replace TPDOSyncCycle with TPDOSyncRPDOsCycle, TPDOEventCycle,
TPDOEventRPDOsCycle or PDOTurnaroundCycle for the other tests.

PCANopen Inspector User Manual

Page 52

Chapter 8 – Test Reports

8.1 Overview

After the completion of one or more tests, a test report may be generated. The test report
is a plain text file containing the node and test configuration information and the results of
the tests.

Enough information is included in the test report for someone to identically configure
PCANopen Inspector from it and reproduce the tests. Therefore it is ideally suited for formal
test reports and sharing of information between different company locations.

8.2 Format

The test report is split into two sections, Human Readable and Machine Readable. Both
sections contain the same information, except that in the machine readable section the data
is separated by tabs. This allows the machine readable portion of the file to be imported into
Excel or other spreadsheet software.

8.3 Generation and Viewing

There are several ways to generate a test report at any time:

� Click on the Generate and View Test Report button on the toolbar
� Choose "Generate and View Test Report" from the Test Reports menu

You will be prompted for a location to save the report to. Once saved the report will be
automatically opened in the default view for text files (usually Notepad).

To view the last generated report:

� Click on the View Last Generated Test Report button on the toolbar
� Choose "View Last Test Report" from the Test Reports menu

The test report will be opened in the default viewer for text files (usually Notepad). The
location of the last generated report is remembered even when the application is closed, so
it is not necessary to generate a report first before using this feature. At least one report in
the past must have been generated, however.

8.4 Verification

If a test report is received from another person, it is possible to verify that the report has
not been altered since it was generated. Choose "Check Test Report For Changes" from the
Test Reports menu and select the test report to verify.

PCANopen Inspector User Manual

Page 53

In order to implement this feature, all test reports have a checksum at the bottom of the
file. Altering or removing the checksum will render the report unable to be verified by
PCANopen Inspector.

PCANopen Inspector User Manual

Page 54

Appendix A – CXL Reference

This appendix describes the CXL language used for the Network Description Files. Note that
this is a generic file format, and many features may not be applicable to this application.

A.1 File Format

Header and Footer
CXL files are in plain ASCII format. Each file begins with a header:

<?xml version="1.0" encoding="UTF-8"?>
<cxl version="1.00" author="Joe Bloggs" date="08-Jul-2004">

and ends with a footer:

</cxl>

Between the header and footer are the top level tags. The top level tags specify sub level
tags, which may also in turn specify lower level tags. Refer to the following sections for a
full description of each top-level tag.

XML Tag
The XML tag must appear exactly as shown. Even though the encoding is UTF-8, only latin
characters are currently supported.

CXL Tag - Version
The version field is mandatory and specifies the CXL file format version. Currently only
version 1.00 is defined.

CXL Tag - Author
The author field is optional. The value does not have a defined format.

CXL Tag - Date
The date field is optional. The value has the format:

dd-mmm-yyyy

where dd is the day, mmm is the first three letters of the month and yyyy is the year.

Number Bases
All hexadecimal values in CXL are prefixed with "0x".

PCANopen Inspector User Manual

Page 55

Case
Tag names are case sensitive and must appear as they are described in this appendix. The
data between the tags is not case-sensitive.

Formatting
Whitespace (spaces, tabs, newlines, carriage returns) are ignored between end and start
tags. For example the following are the same:

<message>
 <id>0x81</id>
 <name>Node 1 Emergency</name>
</message>

<message><id>0x81</id><name>Node 1 Emergency</name></message>

But whitespace in the data itself is not ignored, so the following are not the same:

<message>
 <id>0x81</id>
 <name>Node 1 Emergency</name>
</message>

<message>
 <id>0x81</id>
 <name>Node 1
 Emergency</name>
</message>

A.2 objectdictionary

Defines an Object Dictionary. There may be multiple objectdictionary tags in a symbols file.
The subtags are:

� nodeid

Describes the ID of the node that implements the Object Dictionary. Optional.
� entry

Describes an Object Dictionary entry

nodeid
If the Object Dictionary relates to a specific node then the nodeid subtag may be included.
It specifies the ID of the node in hexadecimal. If it is omitted, then the Object Dictionary
entries relate to all nodes.

Example:

PCANopen Inspector User Manual

Page 56

<nodeid>0x45</nodeid>

objectdictionary examples:

<objectdictionary>
 <nodeid>0x40</nodeid>
 <entry>
 …
 </entry>
 <entry>
 …
 </entry>
</objectdictionary>

<objectdictionary>
 <entry>
 …
 </entry>
 <entry>
 …
 </entry>
</objectdictionary>

entry
Describes a single entry in the Object Dictionary and has the following subtags:

� index

Describes the index of the entry
� name

Describes the name of the entry
� subentry

Describes the subentries in the entry

index
Contains the value in hexadecimal of the index of the entry.

Example:

<index>0x1000</index>

name
Contains the name associated with the entire Object Dictionary entry.

Example:

<name>Device Type</name>

PCANopen Inspector User Manual

Page 57

subentry
Contains the following subtags that define the subentry:

� subindex

Describes the subindex of the subentry.
� name

Describes the name of the subentry. Optional.
� type

Describes the type of the subentry.

subindex

Contains the value in hexadecimal of the subindex of the subentry.

Example:

<subindex>0x00</subindex>

name

Contains the name of the subentry. This name is appended to the name of the entry when
displayed. If the name subelement is omitted, then no name is appended to the name of the
entry. Omitting the name is therefore only useful if the entry has one subentry.

Example:

<name>Number of Entries</name>

type

Contains the CANopen data type of the subentry. It must be one of the following values
(case is ignored):

� BOOLEAN
� INTEGER8
� INTEGER16
� INTEGER24
� INTEGER32
� INTEGER40
� INTEGER48
� INTEGER56
� INTEGER64
� UNSIGNED8
� UNSIGNED16
� UNSIGNED24
� UNSIGNED32
� UNSIGNED40
� UNSIGNED48
� UNSIGNED56
� UNSIGNED64
� REAL32

PCANopen Inspector User Manual

Page 58

� REAL64
� VISIBLE_STRING
� OCTET_STRING
� UNICODE_STRING
� TIME_OF_DAY
� TIME_DIFFERENCE
� DOMAIN

Example:

<type>UNSIGNED32</type>

Examples
The following are examples of an entry:

<entry>
 <index>0x1000</entry>
 <name>Device Type</name>
 <subentry>
 <subindex>0x00</subindex>
 <type>UNSIGNED32</type>
 </subentry>
</entry>

<entry>
 <index>0x2000</index>
 <name>Cursor Position</name>
 <subentry>
 <subindex>0x00</subindex>
 <name>Number of Entries</name>
 <type>UNSIGNED8</type>
 </subentry>
 <subentry>
 <subindex>0x01</subindex>
 <name>X</name>
 <type>REAL32</type>
 </subentry>
 <subentry>
 <subindex>0x02</subindex>
 <name>Y</name>
 <type>REAL32</type>
 </subentry>
</entry>

PCANopen Inspector User Manual

Page 59

A.3 network

Defines network wide information. There may be multiple network elements in a symbols
file. The subtags are:

� message

Describes a message identifier
� abortcode

Describes an SDO abort code
� errorcode

Describes an error code
� node

Describes a node on the network
� devicetype

Describes a device type
� vendor

Describes vendors of CANopen nodes

message
Describes a single message and has the following subtags:

� id

Describes the COB-ID of the message
� name

Describes the name of the message

id
Describes the COB-ID of the message in hexadecimal.

Example:

<id>0x80</id>

name
Describes the name of the message. I.e. the name to associate with the ID.

Example:

<name>SYNC</name>

Examples
The following are examples of message identifier definitions:

<message>
 <id>0x80</id>

PCANopen Inspector User Manual

Page 60

 <name>SYNC</name>
</message>
<message>
 <id>0x81</id>
 <name>Node 1 Emergency</name>
</message>

abortcode
Describes a single abort code and has the following subtags:

� code

Describes the abort code.
� name

Describes the name of the code.

code
Describes the code in hexadecimal.

Example:

<code>0x05030000</code>

name
Describes the name of the abort code. I.e. the name to associate with the abort code.

Example:

<name>Toggle bit not alternated</name>

Examples
The following are examples of abort code definitions:

<abortcode>
 <code>0x05030000</code>
 <name>Toggle bit not alternated </name>
</abortcode>

errorcode
Describes a single error code and has the following subtags:

� code

Describes the error code.
� name

Describes the name of the code.

PCANopen Inspector User Manual

Page 61

code
Describes the code in hexadecimal.

Example:

<code>0x2000</code>

name
Describes the name of the error code. I.e. the name to associate with the error code.

Example:

<name>Current</name>

Examples
The following are examples of error code definitions:

<errorcode>
 <code>0x2000</code>
 <name>Current</name>
</errorcode>

node
Describes a single node and has the following subtags:

� id

The ID of the node.
� name

Describes the name of the node.
� eds

Describes the Electronic Datasheet for the node.
� simsetupfile

Describes the setup file for the simulated node. Optional.
� simdll

Describes the name of the simulation DLL. Optional.
� simio

Describes the simulation IO file to use when node is simulated. Optional.
� simproduct

Describes the predefined product to simulate. Optional.

id
Describes the ID of the node in hexadecimal.

Example:

<id>0x7F</id>

PCANopen Inspector User Manual

Page 62

name
Describes the name of the node. I.e. the name to associate with the node.

Example:

<name>NMT Master</name>

eds
Describes the electronic datasheet of a node by specifying the path to the file. The path may
be absolute or relative to the symbol file.

Example:

<eds>..\eds\mynode.eds</eds>

simsetupfile
Either contains the name of a standard setup file located in the Simulation\Setup Files
subfolder (minus the .txt extension), or contains the absolute path to a specific setup file to
use. Optional and when used it is assumed that the node is simulated, however it is only
used with PCANopen Magic ProDS.

Example:

<simsetupfile>Generic IO</simsetupfile>

simdll
Describes the name of the DLL to be used to simulate the node. Optional and when used it
is assumed that the node is simulated, however it is only used with PCANopen Magic ProDS.
The name must the name of a simulation DLL in the Simulation\DLLs subfolder. May also be
an absolute path to a specific DLL.

Example:

<simdll>MicroCANopen.dll</simdll>

simio
Describes the name of the IO file to be used to provide controls when the node is simulated.
Optional. Only used with PCANopen Magic ProDS. The name must be the name of a file in
the Simulation\IO Files subfolder minus the extension (.sim) or the absolute path to a
specific simulation file.

Example:

<simio>PCAN_MM_Dig1</simio>

PCANopen Inspector User Manual

Page 63

simproduct
Describes the product that the node should function like when simulated. Products are
defined in the Simulation\Products subfolder, and are a shorthand method of specifying the
simsetupfile, simdll and simio parameters. Optional and usually used instead of simsetupfile,
simdll and simio. When used it is assumed the node is simulated, however it is only used
with PCANopen Magic ProDS.

Example:

<simproduct>PEAK MicroMod</simproduct>

Examples
The following are examples of node definitions:

<node>
 <id>0x01</id>
 <name>Motor Controller</name>
</node>
<node>
 <id>0x7F</id>
 <name>NMT Master</name>
 <eds>..\eds\nmtmaster.eds</eds>
</node>

devicetype
Describes a single device type and has the following subtags:

� profile

The device profile number.
� name

The name of the device profile.
� Bit

Describes a single bit in the upper 16 bits of the device type. Optional.

profile
Describes the device profile number.

Example:

<profile>0x0191</profile>

name
Describes the name of the device profile. I.e. the name to associate with the device profile.

Example:

<name>I/O Module</name>

PCANopen Inspector User Manual

Page 64

bit
Describes a bit in the upper 16 bits of the device type, and has the following subtags:

� position

The bit position in the range 16 – 31.
� set

Text to display when the bit is set.
� unset

Text to display when the but is not set.

position

Defines the position of the bit being described. Must be in the range 16 – 31.

Example:

<position>16</position>

set

Defines the text to display when the bit is set. May be blank.

Example:

<set>Digital inputs</set>

unset

Defines the text to display when the bit is unset. May be blank.

Example:

<unset>No digital inputs</unset>

Examples
The following are examples of device type definitions:

<devicetype>
 <profile>0x0191</profile>
 <name>I/O Module</name>
 <bit>
 <position>16</position>
 <set>Digital inputs</set>
 <unset></unset>
 </bit>
</devicetype>

vendor
Describes a single CANopen node vendor, and has the following subelements:

PCANopen Inspector User Manual

Page 65

� id

The Manufacturer ID (24-bits).
� name

The vendor's name
� department

Describes a department for the vendor (8-bits). Optional.

id
Defines the manufacturer ID for the vendor. This is the lower 24 bits of the Vendor ID.

Example:

<id>0x455341</id>

name
Defines a name for the vendor.

Example:

<name>ESAcademy</name>

department
Defines a single department for the vendor. There may be up to 256 department entries for
a single vendor. The following subelements are defined:

� id

The ID of the department.
� name

The name of the department.

id

Defines the ID for the department. This is the upper 8 bits of the Vendor ID.

Example:

<id>0x01</id>

name

Defines a name for the department.

Example:

<name>USA</name>

Examples
The following is an example of a vendor declaration:

PCANopen Inspector User Manual

Page 66

<vendor>
 <id>0x455341</id>
 <name>ESAcademy</name>
 <department><id>0x00</id><name>Extenal</name></department>
 <department><id>0x01</id><name>USA</name></department>
 <department><id>0x02</id><name>Germany</name></department>
 <department><id>0x03</id><name>ESS Germany</name></department>
</vendor>

A.4 processdata

Defines process data that can appear on the bus. There may be multiple processdata
elements in a symbols file. The subtags are:

� data

 Defines a single item of process data

data
Defines a single item of process data and has the following subtags:

� name

The name of the process data
� id

The COB-ID of the PDO that contains the process data
� startbit

The starting bit of the process data
� endbit

The ending bit of the process data
� type

The type of the process data
� units

The units of the data. Optional.
� factor

The scaling factor to apply to the value of the data. Optional.
� offset

The offset to apply to the value of the data. Optional.

name
The name of the process data. This will be the name displayed.

Example:

<name>Temperature</name>

id
The message ID of the PDO that contains the process data in hexadecimal.

PCANopen Inspector User Manual

Page 67

Example:

<id>0x180</id>

startbit
The starting bit where the process data can be found inside the PDO's data (0-indexed).

Example:

<startbit>8</startbit>

endbit
The ending bit where the process data can be found inside the PDO's data (0-indexed).

Example:

<endbit>15</endbit>

type
The CANopen type of the data. It must be one of the following values (case is ignored):

 BOOLEAN
 INTEGER8
 INTEGER16
 INTEGER24

INTEGER32
INTEGER40
INTEGER48
INTEGER56
INTEGER64

 UNSIGNED8
 UNSIGNED16
 UNSIGNED24
 UNSIGNED32
 UNSIGNED40
 UNSIGNED48
 UNSIGNED56
 UNSIGNED64
 REAL32
 REAL64
 VISIBLE_STRING
 OCTET_STRING
 UNICODE_STRING
 TIME_OF_DAY
 TIME_DIFFERENCE
 DOMAIN

PCANopen Inspector User Manual

Page 68

units
The units for the data. For example, degrees, celcius, flashes, rpm, etc.

Example:

<units>RPM</units>

offset
An offset applied to the value of the data after the scaling factor has been applied. Allows
the data to be given specific ranges. May be a real number. Optional.

 value = (value x factor) + offset

The offset is not used for the following types:

 BOOLEAN
 VISIBLE_STRING
 OCTET_STRING
 UNICODE_STRING
 TIME_OF_DAY
 TIME_DIFFERENCE
 DOMAIN

Example:

<offset>6.252</offset>

factor
A scaling factor applied to the value of the data before the offset has been applied. May be a
real number. Optional.

 value = (value x factor) + offset

The scaling factor is not used for the following types:

 BOOLEAN
 VISIBLE_STRING
 OCTET_STRING
 UNICODE_STRING
 TIME_OF_DAY
 TIME_DIFFERENCE
 DOMAIN

Example:

<factor>-45.32</factor>

PCANopen Inspector User Manual

Page 69

Examples
The following are examples of Process Data declarations:

<data>
 <name>Temperature</name>
 <id>0x180</id>
 <startbit>0</startbit>
 <endbit>31</endbit>
 <type>REAL32</type>
 <units>degrees C</units>
</data>
<data>
 <name>Data Size</name>
 <id>0x204</id>
 <startbit>8</startbit>
 <endbit>15</endbit>
 <type>UNSIGNED8</type>
 <units>bytes</units>
</data>

A.5 comments

Allows comments to be inserted into the file. All contents inside the comments tags are
ignored and may be arbitary.

Example:

<comments>
Revision 1.00
History: Added new node definition, AA, 06-Jul-2005
</comments>

A.6 Example File

The following is an example Network Description File:

<?xml version="1.0" encoding="UTF-8"?>
<cxl version="1.00" author="AAyre" date="26-Jan-2004">

 <objectdictionary>
 <entry>
 <index>0x1000</index>
 <name>Device Type</name>
 <subentry>
 <subindex>0x00</subindex>
 <type>UNSIGNED32</type>
 </subentry>

PCANopen Inspector User Manual

Page 70

 </entry>
 <entry>
 <index>0x2000</index>
 <name>Cursor Position</name>
 <subentry>
 <subindex>0x00</subindex>
 <name>Number of Entries</name>
 <type>UNSIGNED8</type>
 </subentry>
 <subentry>
 <subindex>0x01</subindex>
 <name>X</name>
 <type>REAL32</type>
 </subentry>
 <subentry>
 <subindex>0x02</subindex>
 <name>Y</name>
 <type>REAL32</type>
 </subentry>
 </entry>
 </objectdictionary>

 <objectdictionary>
 <nodeid>0x21</nodeid>
 <entry>
 <index>0x2500</index>
 <name>Temperature</name>
 <subentry>
 <subindex>0x00</subindex>
 <type>REAL32</type>
 </subentry>
 </entry>
 </objectdictionary>

 <network>
 <message>
 <id>0x80</id>
 <name>SYNC</name>
 </message>
 <message>
 <id>0x181</id>
 <name>Environment</name>
 </message>
 <abortcode>
 <code>0x05030000</code>
 <name>Toggle bit not alternated</name>
 </abortcode>
 <errorcode>
 <code>0x2000</code>

PCANopen Inspector User Manual

Page 71

 <name>Current</name>
 </errorcode>
 <node>
 <id>0x21</id>
 <name>Environment Monitor</name>
 </node>
 <node>
 <id>0x7F</id>
 <name>NMT Master</name>
 </node>
 <devicetype>
 <profile>0x0191</profile>
 <name>I/O</name>
 <bit>
 <position>16</position>
 <set>Digital inputs</set>
 <unset></unset>
 </bit>
 </devicetype>
 <vendor>
 <id>0x455341</id>
 <name>ESAcademy</name>
 <department><id>0x00</id><name>Extenal</name></department>
 <department><id>0x01</id><name>USA</name></department>
 <department><id>0x02</id><name>Germany</name></department>
 <department><id>0x03</id><name>ESS Germany</name></department>
 </vendor>
 </network>

 <processdata>
 <data>
 <name>Temperature</name>
 <id>0x180</id>
 <startbit>0</startbit>
 <endbit>31</endbit>
 <type>REAL32</type>
 <units>degrees C</units>
 </data>
 </processdata>

</cxl>

This example symbols file defines the following:

� There are two nodes on the network, Environment Monitor (ID 0x21) and NMT

Master (ID 0x7F).
� The PDO with COB-ID 0x181 contains environmental information, and it's first four

bytes contain the temperature in degrees C.

PCANopen Inspector User Manual

Page 72

� All nodes define the Device Type at OD entry 0x1000 and a Cursor Position at
0x2000.

� The Environment Monitor node also defines Temperature at OD entry 0x2500.
� The SYNC message has the COB-ID 0x80.
� A Device Type of 0x00000191 is an I/O node. When bit 16 is set, the device supports

digital inputs.
� The vendor ESAcademy is defined with four departments within the vendor.
� Values are defined for error and abort codes.

