

1 Introduction

CANopenIA
Serial Remote Access to CANopen

for CANgineBerry
for firmware version 1.3 or higher

Rev. 1.16 of 9th October 2019

Published by

Embedded Systems Academy GmbH

Bahnhofstraße 17

D-30890 Barsinghausen, Germany

www.esacademy.com

CANgine products by

Embedded Systems Solutions GmbH

Siebenpfeiiffer-Allee 18

D-76829 Landau, Germany

www.essolutions.de

COPYRIGHT 2014-2019 BY EMBEDDED SYSTEMS ACADEMY GMBH

http://www.esacademy.com/
http://www.essolutions.de/

2 CANopenIA Remote Access and Library User Manual

1 Contents

2 Introduction ... 5

2.1 CANopen Object Dictionary ... 5

2.2 CANopen Manager ... 6

SDO Client .. 6

NMT Master and Heartbeat monitoring .. 6

Automated PDO handling .. 7

2.3 Low level access ... 7

3 Hardware options .. 8

3.1 CANgineBerry ... 8

3.2 CANgine Light ... 8

3.3 CANgineII BT ... 9

3.4 PCAN-RS232 ... 9

3.5 Library for PCAN Interfaces .. 9

3.6 Custom Module or Chip ... 9

3.7 Wakeup and Sleep ... 10

4 System configuration ... 11

4.1 Bitrate and node ID selection ... 11

4.2 Loading a binary EDS .. 11

4.3 Step-by-step custom configuration example ... 12

Create a configuration ... 12

Export the configuration .. 12

Load the configuration .. 13

5 Minimal Manager SDO & PDO Handling .. 14

5.1 Communication options ... 14

Receiving TPDO data from the devices .. 14

Sending data to the devices... 15

3 Introduction

6 The Remote Access Protocol ... 18

6.1 Definitions .. 18

6.2 Error Codes... 20

7 Commands, Responses and Indications .. 21

7.1 Access to local Object Dictionary ... 21

Indication "D": New process data written to local Object Dictionary 21

Command "W": Write to a local Object Dictionary entry .. 23

Response "W": Write (local) response .. 24

Command "R": Read from a local Object Dictionary entry .. 25

Response "R": Read (local) response ... 25

7.2 Access to other nodes .. 26

Command "S": Write to a remote Object Dictionary entry 26

Response "S": Write (remote) response .. 28

Command "U": Read from a remote Object Dictionary entry 29

8 Remote Access Application Example ... 31

9 Object Dictionary entries in the manufacturer specific area 32

Name ... 32

9.1 CANopenIA Device Status .. 32

Device status: own node ID ... 32

Device status: own NMT state ... 32

Device status: own HW state ... 32

Device status: own HW/FW mode ... 32

Chip serial number (where available) .. 33

9.2 CANopenIA Device Control .. 33

Device control: Reset ... 33

Device control 447: Sleep Objection ... 33

Device control 447: Ignore PDOs from VD... 33

Manager control (manager only) ... 33

4 CANopenIA Remote Access and Library User Manual

Default heartbeat producer time (manager only) ... 34

Default heartbeat consumer time (manager only) .. 34

Default PDO update time (manager only) ... 34

Default PDO transmission event time (manager only) .. 34

Default PDO transmission inhibit time (manager only) ... 34

Manager re-scan device (manager only) ... 35

Device and Manager generic CAN Rx / Tx ... 35

Manual PDO trigger (manager only) .. 36

9.3 Status of all nodes .. 36

Last known state of Node 1 ... 37

Last known state of Node X ... 37

9.4 NMT Master Message .. 37

Transmit NMT (manager only)... 37

9.5 Manager: Automatic Node Scan .. 38

10 The CAN232 Protocol Support .. 39

10.1 Open and Close CAN232 support ... 39

10.2 Changing the CAN bitrate... 39

10.3 Transmitting and receiving data .. 39

5 Introduction

2 Introduction

The CANopen coprocessor (447izer if in CiA447 mode) implements a CANopen device, or

a simplified CANopen manager, depending on firmware version. A host system can

communicate with the CANopenIA coprocessor via a regular serial channel. The protocol

used is ESAcademy’s CANopen remote access protocol described in this document. The

CANopenIA coprocessor handles all CANopen communication.

COPROCESSOR WITH HARDWIRED SERIAL INTERFACE

2.1 CANopen Object Dictionary

As required by any CANopen device, the CANopenIA/447izer implements a CANopen

Object Dictionary (OD) that contains all configurations of the chip itself as well as all the

process data communicated. This OD is available to the CANopen network as well as to

the host. Which OD entries are present in the CANopenIA depends on its configuration.

Default configurations are provided for all CANopenIA implementations. Customized

configuration file can be generated using the CANopen Architect EDS Editor and trans-

ferred into the flash memory of the CANopenIA.

6 CANopenIA Remote Access and Library User Manual

OBJECT DICTIONARY IS ACCESS FROM SERIAL AND CANOPEN SIDE

2.2 CANopen Manager

In CANopen, managers provide several functionalities. The ones provided by CANopenIA

are listed in this section.

SDO Client

The CANopenIA-MGR and 447izer versions also support SDO client services. Once such a

CANopenIA device is up and running (CANopen state operational), it may send CANopen

SDO (Service Data Object) read and write requests to the nodes connected to the CANo-

pen network. This gives the host application read and write access to all the Object Dic-

tionaries of all connected nodes.

Note that in regular CANopen this means that this device uses the regular SDO client

channels used by a CANopen Manager. DO NOT use this mode, when another CANopen

Manager is present and using these channels at the same time.

NMT Master and Heartbeat monitoring

The CANopenIA-MGR firmware also provides the CANopen NMT (Network Management)

Master functions to control the individual nodes connected. The firmware can autostart

known devices to facilitate a quick start up of CANopen systems.

A default heartbeat time and timeout monitoring can be automatically activated. If de-

vices are lost (no more heartbeat received), the master automatically transmits a reset

request to these nodes for automated recovery support.

7 Introduction

Automated PDO handling

The minimal CANopen manager supports an automated PDO (Process Data Object) han-

dling. PDO configurations of connected devices are analyzed and activated. The host is

informed about every PDO received from all devices. The information passed on to the

host for data received includes node ID, object info (index, subindex) and the data.

2.3 Low level access

The Software also implements a generic low-level access mode. If this mode is activated,

then any CAN message can be transmitted by the host and CAN messages received are

reported back to the host. An optional CAN message ID filter allows selecting the CAN

messages that should be received.

8 CANopenIA Remote Access and Library User Manual

3 Hardware options

3.1 CANgineBerry

The CANgineBerry is a CANopenIA module intended for the Raspberry Pi. It has a CAN

(DB9) connector and only uses 4 pins for the connection to the Raspberry Pi: +5V, GND

and the 3.3V Rx/Tx signals of the serial channel. Both CANopen RUN and ERR LEDs are

provided.

The module can also be used with any other host system that provides the 4 required

pins. If the preferred communication channel to a host is USB, then a USB-UART chip can

be used as an interface between the host and the CANgineBerry. In that case verify that

the correct voltage levels are used, the CANgineBerry requires +5V for the power supply

but only uses 3.3V on the Tx/Rx lines.

CANGINEBERRY SYSTEM OVERVIEW

3.2 CANgine Light

The CANgine Light by Embedded Systems Solutions GmbH is a small device with a CAN

connector on one side and a RS232 (DB9) connector on the other. Power is supplied via

the CAN connector. The RS232 side can be directly connected to most USB-RS232 con-

verters. Both CANopen RUN and ERR LEDs are provided but no further optional inputs or

outputs.

9 Hardware options

3.3 CANgineII BT

The CANgineII BT by Embedded Systems Solutions GmbH is a small device with a CAN

connector and an internal Bluetooth module. Power is supplied via the CAN connector.

On the connecting Bluetooth device, the CANgineII BT appears like a generic serial de-

vice. Both CANopen RUN and ERR LEDs are provided but no further optional inputs or

outputs.

3.4 PCAN-RS232

The PCAN-RS232 module is a boxed CAN to RS232 module with industrial style open

connectors.

3.5 Library for PCAN Interfaces

The CANopenIA functionality is also available as a Microsoft Windows® DLL for PEAK’s

CAN_API4 supporting the PCAN interfaces from PEAK System. When used as a library, all

commands, responses and indications are provided as functions and call-back functions.

3.6 Custom Module or Chip

The CANopenIA Coprocessor is available as a module or chip for direct integration into

your hardware. The number of pins used is minimal, the input, output and LEDs are op-

tional.

SIGNALS OF THE CANOPENIA CHIP OR MODULE

10 CANopenIA Remote Access and Library User Manual

CANopenIA coprocessor implementations are available for the following microcontrol-

lers:

• NXP LPC11C24
uses internal transceiver, can be directly connected to the CAN_L and CAN_H
lines of the CANopen network

• ST-Microelectronics STM32F091 or STM32F042
requires an external transceiver and connects to the CAN_RX and CAN_TX pins

The optional input signals are:

• MODE:
Set high if used in CiA 447 mode, else low for regular CANopen mode

• AUTORUN:
Set high if device should autostart (directly switch itself into operational mode),
not recommended for CiA 447

• WAKEUP:
A rising flank on this pin wake ups the chip / module if it was in sleep, the device
then produces the wakeup messages

• USER:
Input pin for customizations

The optional output pins are

• PWR:
Produce a rising flank on wakeup

• SLPRQ:
Set high, if sleep request was received from power manager

3.7 Wakeup and Sleep

In CiA 447 mode the chip wakes up upon detecting any activity on the serial channel, the

CANopen channel or the wakeup pin. It then participates in the CANopen wakeup com-

munication.

Upon reception of the sleep request from the CANopen power manager the device for-

wards this request to the serial interface and then sets itself into sleep mode.

11 System configuration

4 System configuration

The CANopenIA implementation is configured by the local Object Dictionary. This is

stored in Flash memory and can be re-loaded. The format used is ESAcademy’s binary

EDS file format, which is exported by the CANopen Architect EDS utility for Editing CAN-

open Electronic Data Sheets (EDS). Depending on CANopenIA firmware, a variety of de-

fault configuration files are provided.

GENERATING A CONFIGURATION WITH CANOPEN ARCHITECT

In addition, some firmware versions support customized configurations. If an EDS or

CODB (CiA format for Object Dictionary definition) already exists specifying the configu-

ration, then this can be imported into the CANopen Architect software. After edit-

ing/modifying the configuration, a current EDS and binary EDS are exported. The binary

EDS is directly loaded into the CANopenIA device, module or chip.

4.1 Bitrate and node ID selection

The bitrate and node ID settings are also made through the binary EDS. The host system

cannot change these settings. If the configured node ID is zero, then LSS (Layer Setting

Services) are used to get a node ID assigned by the LSS Master.

4.2 Loading a binary EDS

When using a CANopenIA library, the binary EDS file with the configuration to be used is

passed to the library upon its initialization. All other implementations store the configu-

ration in EEPROM.

12 CANopenIA Remote Access and Library User Manual

The CANgineBerry supports loading the configuration file through the serial interface

(using the provided COIAUpdater utility). This gives the host full configuration control, as

it can activate any desired configuration by itself.

LOADING A CANGINEBERRY CONFIGURATION – VIA HOST

4.3 Step-by-step custom configuration example

Configurations are created and maintained with ESAcademy’s CANopen Architect utility

to edit Electronic Data Sheets (EDS). Example configurations are provided as part of the

delivery.

Create a configuration

To start your own configuration, duplicate the “CiAxxx_Minimal” device and rename it to

your own project. Review and edit the settings in the “File” and “Device” sections, as

well as the object dictionary entries 1008h to 100Ah and 1018h.

Now add the entries that you still require for your device by copying them from the

“CiAxxx_AllEntries” section or by adding them manually.

Export the configuration

To create the binary EDS configuration file required by CANopenIA devices, select “Ex-

port Binary EDS for Bootloader” from the local menu.

This creates a “.bin” file containing the binary EDS.

13 System configuration

EXPORTING A CONFIGURATION FROM CANOPEN ARCHITECT

Load the configuration

The “.bin” file created can directly be transferred to the CANgineBerry using the

COIAUpdater utility..

14 CANopenIA Remote Access and Library User Manual

5 Minimal Manager SDO & PDO Handling

The CANopenIA Minimal Manager version simplifies how an application uses CANopen

communication. Here all data is only referred to by a node ID and the Object (Index and

Subindex) to address ab object in a node’s object dictionary.

Using the write and read to a remote object dictionary functions, the host system can

read and write all objects in a network.

In addition, the host system receives event notifications, if data came in from a remote

object. Again, referred to by the node ID the data comes from and the object dictionary

entry (Index and Subindex).

If your application is generic and does not require optimized communication (e.g. to

lower the bus load for communication or achieve shorter reaction times), the this is all

you need to know.

5.1 Communication options

The default CANopen communication mode used by the CANopenIA-MGR is the SDO

communication (Service Data Objects). Here the manager sends one read/write request

for a single object of a node and receives one response.

Internally, the manager scans detected devices for their PDO (Process Data Object) con-

figuration. The scanned information is used by the minimal manger to configure itself for

receiving all Transmit PDOs transmitted by the devices and for transmission of all Receive

PDOs to the devices.

Receiving TPDO data from the devices

The application requires no knowledge about the Transmit PDO configuration of the

devices. Once self-configured, the minimal manger receives all PDOs generated by the

devices and converts them into the corresponding “New Data” indication events towards

the host or application. The application automatically receives all PDO data.

For each object received, the host/application is informed about:

• The node ID which sent the data

• Which Object of that node was received (Index/Subindex)

• The data itself

15 Minimal Manager SDO & PDO Handling

Sending data to the devices

The application addresses the data in the same fashion as for received data. It uses the

WriteRemoteOD functionality and informs the CANopenIA Manager about:

• The node ID to which the data needs to be send

• Which Object of that node is it going to (Index/Subindex)

• The data itself

The manager automatically determines if this data can be send by PDO or if a SDO needs

to be triggered. As PDOs can have multiple objects mapped (multiple object contained in

one CAN message) all mapped items must be written at least once, before the PDO can

be transmitted by the manager. This is required to prohibit transmission of uninitialized

data/commands to a CANopen device.

We recommend that once the application receives the call-back that a mode has been

scanned, it writes once to all objects of that device that can be written to, to ensure all

data has been initialized.

PROCESSING REMOTE DATA WRITE REQUESTS

The flow chart above illustrates how the manager processes data write requests to

nodes on the network. If the data written is not part of any PDO, it gets written to the

16 CANopenIA Remote Access and Library User Manual

node using a SDO client write access. Once the SDO response comes back from the node,

this response is passed on to the host.

Otherwise the data is copied to the appropriate buffer and the PDO update timer is han-

dled. If it is the first use, then the timer value is multiplied with 5 to give the host more

time to write all the data to init the PDO. The PDO gets queued/triggered ready for

transmission once the PDO update timer expires.

Internally, the CANopenIA system continuously checks if a PDO requires transmission

(see next flow chart “PDO trigger task”.

PDOs are only processed for transmission, if data is available and the update time ex-

pired.

PDO TRIGGER TASK

If both the default event and inhibit times (objects [5F01h,05h] and [5F01h,06h], see

section 9.2) are zero, then a PDO is triggered for transmission whenever the

update time expires (time since last write by the host) or the last mapped entry

has been written.

Once set (non-zero), the event and inhibit times work as defined in CANopen:

If the inhibit time is set (non-zero) and the event time is zero, then any repetitive

transmission is only transmitted, if the time since last transmission is at least as

long as the inhibit time.

17 Minimal Manager SDO & PDO Handling

If the event time is set (non-zero) and the inhibit time is zero, then the PDO is

transmitted cyclically, no matter if the data has been updated by the application or

not.

If both times are set, then they are combined. If triggered by host (expiration of

update time), then the PDO gets transmitted, observing the inhibit time. Without

host triggering, the PDO is transmitted cyclically based on the event time.

18 CANopenIA Remote Access and Library User Manual

6 The Remote Access Protocol

This chapter specifies the commands for controlling the CANopenIA Coprocessor via a

serial interface. The protocol is suitable for tunneling through other networks such as a

Bluetooth or TCP connection as well as for communication between a CANopen task and

a host task within one system.

The communication between the host and the CANopenIA is based on messages with

binary content and a check sum.

6.1 Definitions

Byte or UNSIGNED8:

8-bit, unsigned value

UNSIGNED16:

16-bit, unsigned value

UNSIGNED32:

32-bit, unsigned value

Host:

The processor or application controlling the CANopen CANopenIA via the interface speci-

fied in this document

Command:

Message from host to CANopenIA with a request to execute a command.

Response:

Message from CANopenIA to host in response to a command. Every command triggers a

response. Some responses may take longer as CANopen communication might be in-

volved. As a result one or multiple Indications might occur before receiving a response.

Indication:

Message from CANopenIA to host indicating the host that an event occurred.

Max data size:

In this version, the maximum user data size is 28 bytes. Including overhead, this results in

a maximum serial packet size of 35 bytes.

Message Definition

Any message exchanged between Host and the CANopen node use the following struc-

ture (all Bytes):

19 The Remote Access Protocol

<start character><length><command/response/indication><checksum>

Multi-Byte values are transmitted in little-endian format.

<start character> (Byte) default: 11h

1. Bits 0 to 3 indicate the network number, the value of zero is reserved,

the default is one.

2. Bit 4 indicates if a checksum is used or not. If set, checksum is used, the

default is one, using a checksum.

3. Bit 5 indicates if the length value has 8 or 16 bit. If set, 16 bits are used,

the default is zero, using 8 bits for the length value.

4. Bits 6 to 7 are reserved.

<length> (Byte or UNSIGNED16, see Bit 5 of start character)

The total length of the command/response/indication in bytes.

<command/response/indication>

The data transferred in this packet can be a command, a response or an indication. For

details see specifications below.

<checksum> (UNSIGNED16 or not used, see Bit 4 of start character)

A 16-bit CRC calculated with the Polynomial x16 + x15 + x2 + 1. The checksum calculation

does not involve the start character.

20 CANopenIA Remote Access and Library User Manual

6.2 Error Codes

Most of the responses contain an error code field. A value of zero means "no error". The

bits in the error code field have the following meanings:

Bit Meaning

0 Object Dictionary entry not found

1 Invalid command length

2 Invalid command

3 Busy (e.g. SDO client is currently in use)

4 No resources (e.g. internal problem obtaining an SDO

client) 5 Transmit buffer is full

6 Transfer was aborted

7 Receive buffer size was too small

8 SDO toggle error

9 SDO timeout

10 Unknown/miscellaneous error

11 Not supported

12 Non-volatile memory write failure

13 Not all PDO mapped objects written

21 Commands, Responses and Indications

7 Commands, Responses and Indications

7.1 Access to local Object Dictionary

The commands, responses and indications of this section are used to access the local

object dictionary of the CANopenIA Coprocessor.

The syntax shown is split into the serial version “Serial” (on lowest level, treated as an

array of bytes) and the “C” style function interface, if used in the library version.

Indication "D": New process data written to local Object Dictionary

New process data arrived from the CANopen network and was written to a local

Object Dictionary entry. The node ID of the sender (if known), the Object Diction-

ary entry in question and the new data is part of this indication. This applies to

both data received by SDO and PDO access. Data size is indicated via length

field of lower communication layer or length parameter when use is a library.

In minimal manager and CiA 447 mode ALL CiA defined/known PDOs are re-

ceived and cause an indication. Advanced versions allow setting of optional filters

to ignore unwanted PDOs.

22 CANopenIA Remote Access and Library User Manual

Serial: D<nodeid><index><subindex><data>

Language Prototype

C void NewData(UNSIGNED8 nodeid, UNSIGNED16 index,

UNSIGNED8 subindex, UNSIGNED16 length, UNSIGNED8

*data);

C++ static void NewData(UNSIGNED8 nodeid, UNSIGNED16

index, UNSIGNED8 subindex, UNSIGNED16 length, UN-

SIGNED8 *data);

Java public static void NewData(byte NodeID, int Index,

byte Subindex, int DataLength, Pointer Data,

Pointer Param);

Parameter Description

nodeid The ID of the node sending the data

index Index of the object dictionary entry in the node

subindex Subindex of the object dictionary entry in the node

length Length of data data

data The data

23 Commands, Responses and Indications

Command "W": Write to a local Object Dictionary entry

Writes data to one local Object Dictionary entry. Data size is indicated via length

field of lower communication layer (see message definition).

Serial: W<index><subindex><data>

Language Prototype

C UNSIGNED32 C_SerialProtocol_WriteLocalOD(UNSIGNED16 in-
dex, UNSIGNED8 subindex, UNSIGNED32 datalength, UNSIGNED8
*data)

C++ UNSIGNED32 SerialProtocol::WriteLocalOD(UNSIGNED16 in-
dex, UNSIGNED8 subindex, UNSIGNED32 datalength, UNSIGNED8
*data)

Java long C_SerialProtocol_WriteLocalOD(short index, byte sub-
index, int datalength, Pointer data)

24 CANopenIA Remote Access and Library User Manual

Parameter Description

index The index of the object dictionary entry to write to

subindex The subindex of the object dictionary entry to write to

datalength Number of bytes to write

data Data to write

Response "W": Write (local) response

The following message is a response from the CANopen device to every “W”

message processed.

Serial: W<index><subindex><err>

Not used in the programming interface (WriteLocalOD is blocking and returns

values)

25 Commands, Responses and Indications

Command "R": Read from a local Object Dictionary entry

Request to read data from one Object Dictionary entry. Data size is indicated via

length field of lower communication layer.

Serial: R<index><subindex>

Language Prototype

C UNSIGNED32 C_SerialProtocol_ReadLocalOD(UNSIGNED16 in-
dex, UNSIGNED8 subindex, UNSIGNED32 *datalength, UNSIGNED8
*data)

C++ UNSIGNED32 SerialProtocol::ReadLocalOD(UNSIGNED16 index,
UNSIGNED8 subindex, UNSIGNED32 *datalength, UNSIGNED8
*data)

Java long C_SerialProtocol_ReadLocalOD(short index, byte sub-
index, Pointer datalength, Pointer data)

Parameter Description

index The index of the object dictionary entry to read from

subindex The subindex of the object dictionary entry to read from

datalength When called set to the maximum number of bytes to read. On return

holds the number of bytes read

data Filled with read data

Response "R": Read (local) response

The following message is a response from the CANopen device to every “R”

message processed. Data size is indicated via length field of lower communica-

tion layer (see message definition).

Serial: R<index><subindex><err><data>

Not used in the programming interface (ReadLocalOD is blocking and returns

values)

The return value is ERROR_NOERROR or an error code, ERROR_xxx.

26 CANopenIA Remote Access and Library User Manual

7.2 Access to other nodes

The commands, responses and indications of this section are used to access

object dictionary entries of any node on the network. In CANopen terminology

these use SDO clients to communicate with the nodes addressed.

These commands require SDO clients which are only available when the Manag-

er or CiA 447 functionality is enabled.

Command "S": Write to a remote Object Dictionary entry

Writes data to one Object Dictionary entry of a remote node (using SDO client

access). Data size is indicated via length field of lower communication layer.

Serial: S<nodeid><index><subindex><data>

Note: only one remote SDO operation can take place at a time. This applies to

read and writes. An attempt to start a new SDO operation while one is still com-

pleting will generate an error.

27 Commands, Responses and Indications

Language Prototype

C UNSIGNED32 C_SerialProtocol_WriteRemoteOD(UNSIGNED8
nodeid, UNSIGNED16 index, UNSIGNED8 subindex, UNSIGNED32
datalength, UNSIGNED8 *data)

UNSIGNED32

C_SerialProtocol_WriteRemoteODExtended(UNSIGNED8 nodeid,
UNSIGNED16 index, UNSIGNED8 subindex, UNSIGNED32
datalength, UNSIGNED8 *data)

C++ UNSIGNED32 SerialProtocol::WriteRemoteOD(UNSIGNED8 no-
deid, UNSIGNED16 index, UNSIGNED8 subindex, UNSIGNED32
datalength, UNSIGNED8 *data)

UNSIGNED32 SerialProto-
col::WriteRemoteODExtended(UNSIGNED8 nodeid, UNSIGNED16
index, UNSIGNED8 subindex, UNSIGNED32 datalength, UN-
SIGNED8 *data)

Java long C_SerialProtocol_WriteRemoteOD(byte nodeid, short
index, byte subindex, int datalength, Pointer data)

long C_SerialProtocol_WriteRemoteODExtended(byte nodeid,
short index, byte subindex, int datalength, Pointer data)

Parameter Description

nodeid The ID of the node to write to

index The index of the object dictionary entry to write to

subindex The subindex of the object dictionary entry to write to

datalength The number of bytes to write

data Data to write

The “extended” versions are non-blocking. They return immediately and on completion

of the write the SDO Request Complete callback function is called.

The return value is ERROR_NOERROR or an error code, ERROR_xxx.

28 CANopenIA Remote Access and Library User Manual

Language Prototype

C void SDORequestComplete(UNSIGNED8 nodeid, UN-

SIGNED32 result);

C++ static void SDORequestComplete(UNSIGNED8 nodeid,

UNSIGNED32 result);

Java public static void SDORequestComplete(byte NodeID,

int Result);

Parameter Description

nodeid The ID of the node that was written to

Result The result of the write operation, SDOERR_OK or SDOERR_xxx

Response "S": Write (remote) response

The following message is a response from the CANopen device to every “S”

message processed.

Serial: S<nodeid><index><subindex><err>

Not used in the programming interface (WriteRemoteOD is blocking and returns

values)

29 Commands, Responses and Indications

Command "U": Read from a remote Object Dictionary entry

Request to read data from a remote Object Dictionary entry (using SDO client

access, upload).

Serial: U<nodeid><index><subindex>

Language Prototype

C UNSIGNED32 C_SerialProtocol_ReadRemoteOD(UNSIGNED8 no-
deid, UNSIGNED16 index, UNSIGNED8 subindex, UNSIGNED32 *
datalength, UNSIGNED8 *data)

UNSIGNED32

C_SerialProtocol_ReadRemoteODExtended(UNSIGNED8 nodeid,
UNSIGNED16 index, UNSIGNED8 subindex, UNSIGNED32 *
datalength, UNSIGNED8 *data)

C++ UNSIGNED32 SerialProtocol::ReadRemoteOD(UNSIGNED8 no-
deid, UNSIGNED16 index, UNSIGNED8 subindex, UNSIGNED32
*datalength, UNSIGNED8 *data)

UNSIGNED32 SerialProto-
col::ReadRemoteODExtended(UNSIGNED8 nodeid, UNSIGNED16
index, UNSIGNED8 subindex, UNSIGNED32 *datalength, UN-
SIGNED8 *data)

Java long C_SerialProtocol_ReadRemoteOD(byte nodeid, short
index, byte subindex, Pointer datalength, Pointer data)

long C_SerialProtocol_ReadRemoteODExtended(byte nodeid,
short index, byte subindex, Pointer datalength, Pointer
data)

Parameter Description

nodeid The ID of the node to read from

index The index of the object dictionary entry to read from

subindex The subindex of the object dictionary entry to read from

datalength When called set to the maximum number of bytes to read. On return

holds the number of bytes read

data Filled with read data

30 CANopenIA Remote Access and Library User Manual

The “extended” versions are non-blocking. They return immediately and on completion

of the read the SDO Request Complete callback function is called.

The return value is ERROR_NOERROR or an error code, ERROR_xxx.

See “Write to a remote Object Dictionary entry command“ for details of the callback

function.

31 Remote Access Application Example

8 Remote Access Application Example

As part of the delivery, a programming example is provided, it is named Re-

moteAcessApp and uses the serial commands and responses to access the CANopen

network.

The remote access app is provided as command line executable for Linux and Windows

along with all source files. It can be used as basis for own developments.

Use the -h parameter to get a list of supported command line parameters supported.

RA_App -h

Once connected, the RA_App displays all data received as follows:

{node ID, Index, Subindex, Length, Data}

Data received is displayed in hexadecimal along with the node ID from which the data

was received (zero if unknwon), followed by the Index and Subindex indicators, followed

by the data.

32 CANopenIA Remote Access and Library User Manual

9 Object Dictionary entries in the manu-

facturer specific area

The manufacturer specific area of the Object Dictionary provides direct access to

configuration data. These can be accessed using the read and write local com-

mands. Syntax used in listing below:

Name
[index,subindex] (data type, access type)

Description

9.1 CANopenIA Device Status

The entries in this section give the host access to the current state of the local CANo-

penIA device. All these entries are read-only.

Device status: own node ID
[5F00h,01h] (UNSIGNED8, RO)

The node ID of the local CANopenIA device

Device status: own NMT state
[5F00h,02h] (UNSIGNED8, RO)

The current CANopen state of the local CANopenIA device. See section 9.3 for a

list of all defined states.

Device status: own HW state
[5F00h,03h] (UNSIGNED8, RO)

Bit: 0: INIT – set after a completed initialization

 1: CERR – set, if a CAN bit or frame error occurred

 2: ERPA – set, if a CAN "error passive" occurred

 3: RXOR – set, if a receive queue overrun occurred

 4: TXOR – set, if a transmit queue overrun occurred

 5: CANFD – set, if CAN hardware supports CAN FD

 6: TXBSY – set, if Transmit queue is not empty

 7: BOFF – set, if a CAN "bus off" error occurred

Device status: own HW/FW mode
[5F00h,04h] (UNSIGNED32, RO)

Bit: 0..7: 00h: Custom hardware

 01h: CANgineBerry

 02h: CANgineLight

33 Object Dictionary entries in the manufacturer specific area

 03h: CANgineBT

 04h: PCAN-RS232

 05h: PCAN-xxx with PCAN-Basic API

Bit: 8..15: 00h: Custom firmware

 01h: CANopenIA Device

 02h: CANopenIA Manager

 03h: CANopenIA 447izer

Bit: 16..23: Firmware major version

Bit: 24..31: Firmware minor version

Chip serial number (where available)
[5F00h,05h] (UNSIGNED128/DOMAIN, RO)

The serial number of the microcontroller hosting the CANopenIA software.

9.2 CANopenIA Device Control

The entries in this section can be written to and allow the host to actively control

the local CANopenIA device or manager.

Device control: Reset
[5F01h,01h] (UNSIGNED8,WO)

Reset the CANopenIA chip, module or library. Writing129 issues a soft reset, 130

a hard reset.

Device control 447: Sleep Objection
[5F01h,02h] (UNSIGNED8,RW)

Activate the CiA 447 sleep objection (set to 1 to object).

Device control 447: Ignore PDOs from VD
[5F01h,03h] (UNSIGNED32,RW)

For If a bit is set in this value, then PDOs coming from the corresponding virtual

device (see vdfg number in CiA-447) are ignored. For example: set bit 7 to ignore

all PDOs coming from GPS devices.

Manager control (manager only)
[5F01h,04h] (UNSIGNED32,RW)

Bit: 0: KEEP_OP - set to keep nodes operational

 (will send appropriate NMT command automatically)

 1: HB receive all - set to activate automated heartbeat monitoring

 (default HB times below are used)

 2: PDO receive all - set to activate automated device TPDO handling

34 CANopenIA Remote Access and Library User Manual

 (scan devices for their transmit PDOs and receive them all)

 3: PDO transmit all - set to activate automated device RPDO handling

 (scan devices for their receive PDOs and produce them all)

 4: Use scanned entries – set to activate caching of scanned entries.

 If requested by host, reply from cache.

 5: Enforce remote write SDO – set to enforce SDO write access when.

 writing to an OD entry of a remote node, do not send as TPDO.

 6: Manual TPDO trigger – set to activate manual transmit PDO triggering

 (use [5F01h,0Ch] to trigger)

 7-15: Reserved

 16-22: Number of nodes supported for heartbeat monitoring and

 SDO client handling

 23: Reserved

 24-30: Number of nodes supported for automated PDO handling

 31: Reserved

Default heartbeat producer time (manager only)
[5F01h,05h] (UNSIGNED16,RW)

Use this default event time (in milliseconds) for all PDO transmissions by the

manager.

Default heartbeat consumer time (manager only)
[5F01h,06h] (UNSIGNED16,RW)

Use this default event time (in milliseconds) for all PDO transmissions by the

manager.

Default PDO update time (manager only)
[5F01h,07h] (UNSIGNED8,RW)

When the manager updates PDO transmission data, this update timeout is started

before triggering the PDO for transmission. This allows the application to update

all objects of a PDO before its transmission is triggered. Note that this time is not

used, when the PDO event time (see below), is non-zero.

Default PDO transmission event time (manager only)
[5F01h,08h] (UNSIGNED16,RW)

Use this default event time (in milliseconds) for all PDO transmissions by the

manager.

Default PDO transmission inhibit time (manager only)
[5F01h,09h] (UNSIGNED16,RW)

35 Object Dictionary entries in the manufacturer specific area

Use this default inhibit time (in 100th of microseconds) for all PDO transmissions

by the manager.

Manager re-scan device (manager only)
[5F01h,0Ah] (UNSIGNED8,WO)

Writing a node ID to this entry re-triggers the auto-scan mechanism for this node.

The manger will start a new node scan for this device.

Bit: 0-6: Node ID to scan

 7: reserved

Device and Manager generic CAN Rx / Tx
[5F01h,0Bh] (UNSIGNED8,RW)

This feature enables the support of generic CAN messages, not handled by the

local CANopen implementation.

Bit: 0-3: Generic CAN transmit

 0: disabled

 1: Condensed access via object 5F0Ch

 4-7: Generic CAN receive

 0: disabled

 1: Condensed access via object 5F0Ch

CAN messages received, that are not processed by the local CANopen task are

passed on to the host as a write to the local Object Dictionary entry 5F0Ch:

• Node ID: 0

• Index: 5F0Ch

• Subindex: Length of CAN message in bytes (0-8)

• Len: 2 + Length of CAN message in bytes (0-8)

• Data: First 2 byte: CAN ID
 Followed by the data bytes of the CAN message

To transmit a generic CAN message, execute a write to the local object dictionary

entry 5F0Ch:

• Index: 5F0Ch

• Subindex: Length of CAN message in bytes (0-8)

• Len: 2 + Length of CAN message in bytes (0-8)

• Data: First 2 byte: CAN ID
 Followed by the data bytes of the CAN message

Testing with the COIA utility for the CANgineBerry

Activate the feature by a write to [5F01h,0Bh]:

36 CANopenIA Remote Access and Library User Manual

-w 0x5F01,0x0B,0x01,0x11

To transmit a generic CAN message, use the “--tx-can” parameter, passing the

CAN ID, the length and the data bytes:

--tx-can 0x150,4,0x11,0x22,0x33,0x44

This produces a 4-byte CAN message with ID 150h and the four data bytes 11h

to 44h.

Use the monitoring “-m” parameter to monitor incoming data and messages.

Manual PDO trigger (device & manager)
[5F01h,0Ch] (UNSIGNED16,WO)

Manually trigger the transmission of a PDO. When using the CANopen device

firmware (BEDS) version, the parameter passed is the Transmit PDO number to

trigger, starting at 1.

For the manager (MGR) version, this is the only trigger method, if the automatic

PDO triggering mechanism is disabled ([5F01h,04h] bit 6).

To trigger a PDO, write node ID and PDO number into this entry. The PDO trig-

gered is the one matching the Receive PDO of that node.

Bit: 0-7: PDO number, starting at 1

 8-14: Node ID, starting at 1

 14: Reserved

Testing with the COIA utility for the CANgineBerry

Node number 5 is a digital I/O node (CiA 401)

-w 0x5F01,4,4,0x0000003F

--node-write 5,0x6000,1,1,0x55

--node-write 5,0x6000,2,1,0x66

--node-write 5,0x6000,3,1,0x77

--node-write 5,0x6000,4,1,0x88

-w 0x5F01,0x10,2,0x0501

In first line we enable automatic TPDO handling, the next four lines write data into

the PDO and the last line triggers the PDO (node 5, PDO 1).

9.3 Status of all nodes

Only available with CANopenIA-MGR and 447 versions.

37 Object Dictionary entries in the manufacturer specific area

Last known state of Node 1
[5F04h,01h] (UNSIGNED8, RO)

The last known state of node 1, see list below for all defined values.

Last known state of Node X
[5F04h,X] (UNSIGNED8, RO)

The last known state of this node (allowed range 1 to 127), see list below for all

defined values.

The following values are defined:

 NODESTATUS_BOOT 0x00

 NODESTATUS_STOPPED 0x04

 NODESTATUS_OPERATIONAL 0x05

 NODESTATUS_PREOP 0x7F

 NODESTATUS_EMCY_NEW 0x80

 NODESTATUS_EMCY_OVER 0x81

 NODESTATUS_HBACTIVE 0x90

 NODESTATUS_HBLOST 0x91

 NODESTATUS_SCANSTARTED 0x9F

 NODESTATUS_SCANCOMPLETE 0xA0

 NODESTATUS_SCANABORTED 0xA8

 NODESTATUS_RESETAPP 0xB0

 NODESTATUS_RESETCOM 0xB1

 NODESTATUS_SLEEP 0xF0

 NODESTATUS_BOOTLOADER 0xF1

9.4 NMT Master Message

Only available with CANopenIA-MGR version. An NMT Master message can be

triggered by writing to [5F0Ah,01h].

Transmit NMT (manager only)
[5F0Ah,01h] (UNSIGNED16, WO)

The high byte contains the destination node id (1-127) or zero for “all” nodes.

The low byte contains the NMT command:

01h: Switch to operational state

02h: Switch to stopped state

80h: Switch to pre-operational state

81h: Execute an application reset

82h: Execute a communication reset

38 CANopenIA Remote Access and Library User Manual

9.5 Manager: Automatic Node Scan

In CANopen Manager or CiA 447 mode, the device automatically scans nodes

found on the network for often used entries. This data is available, as soon as a

node's state is reported as NODESTATUS_SCANCOMPLETE.

If caching is enabled in the Manager Control word (Object [5F01h,04h]), then the

CANopenIA device will return the pre-scanned entries without re-requesting these

from the device via CANopen.

Example: If the host requests the object [1018h,1] (vendor id) from node 3 by

sending the ReadRemoteOD command, then the CANopenIA will directly reply

with the value, if it is in the local cache.

39 The CAN232 Protocol Support

10 The CAN232 Protocol Support

Some CANopenIA devices support selected commands from the CAN232 (ASCII)

protocol by Lawicel. This is an ASCII protocol that can be directly used with many

terminal programs. Each line ends with a CR (13) byte. Command lines send to

the device are confirmed with a CR (13). In case of error, the device returns BELL

(7).

If you do not want the CANopenIA device to start up with any CANopen style

messages, then configure it to LSS mode and pre-select the CAN bitrate you

want.

When CAN232 support is active, the red LED indicates continuous three flashes.

10.1 Open and Close CAN232 support

O[CR]

Use the single capital ‘O’ and ‘C’ to open or close the protocol support. While

support is “open”, the green LED blinks, else it is solid green.

10.2 Changing the CAN bitrate

Sb

To change the CAN bitrate, send a ‘S’ followed by digit b from 4 to 8:

• 4 : 125 kbit/s

• 5 : 250 kbit/s

• 6 : 500 kbit/s

• 7 : 800 kbit/s

• 8 : 1 Mbit/s

10.3 Transmitting and receiving data

Tiiildd..[CR], Tiiiiiiiildd..[CR]

Use letter ‘t’ for 11-bit CAN ID, ‘T’ for 29-bit CAN ID. Used for both transmit and

receive.

i: hexadecimal number with 3 (for 11bit) or 8 digits with the CAN ID

l: 1 digit, 0 to 8 for the length of the message

d: data bytes, hexadecimal, 2 chars per byte, number of bytes matching previous

parameter

40 CANopenIA Remote Access and Library User Manual

