

1 System Overview

CANopenIA-MGR-DLL
CANopen Instant Access to

minimal Manager functionality
for version 1.0 or higher

This functionality is also implemented in the
MGR firmware of the CANgineBerry.

Rev. 1.08 of 19th December 2019

Published by

Embedded Systems Academy GmbH

Bahnhofstraße 17

D-30890 Barsinghausen, Germany

www.esacademy.com

COPYRIGHT 2017-2019 BY EMBEDDED SYSTEMS ACADEMY GMBH

http://www.esacademy.com/

2 CANopenIA-MGR-DLL User Manual

 1 Contents

This functionality is also implemented in the MGR firmware of the CANgineBerry. . 1

2 System Overview ... 4

2.1 CANopenIA-MGR: Minimal CANopen Manager ... 4

2.2 CANopen Object Dictionary ... 5

2.3 CANopen Manager ... 5

SDO Client .. 5

NMT Master and Heartbeat monitoring .. 5

Automated PDO handling .. 5

3 API Overview ... 6

3.1 Initialization .. 7

3.2 DeInitialization ... 7

4 API Function Summary .. 8

4.1 New Data arrived indication .. 8

4.2 Write to a local Object Dictionary entry command ... 9

4.3 Read from a local Object Dictionary entry command 10

4.4 Write to a remote ObjectDictionary entry command 11

4.5 Read from a remote Object Dictionary entry command 12

5 Minimal Manager SDO & PDO Handling .. 14

5.1 Communication options ... 14

Receiving TPDO data from the devices .. 14

Sending data to the devices... 15

6 Object Dictionary entries in the manufacturer specific area 18

Name ... 18

6.1 CANopenIA Device Status .. 18

Device status: own node ID ... 18

Device status: own NMT state ... 18

3 System Overview

Device status: own HW state ... 18

Device status: own HW/FW mode ... 18

Chip serial number (where available) .. 19

6.2 CANopenIA Device Control .. 19

Device control: Reset ... 19

Device control 447: Sleep Objection ... 19

Device control 447: Ignore PDOs from VD... 19

Manager control (manager only) ... 19

Default heartbeat producer time (manager only) ... 20

Default heartbeat consumer time (manager only) .. 20

Default PDO update time (manager only) ... 20

Default PDO transmission event time (manager only) .. 20

Default PDO transmission inhibit time (manager only) ... 21

Manager re-scan device (manager only) ... 21

Device and Manager generic CAN Rx / Tx ... 21

Manual PDO trigger (manager only) .. 22

SDO client (remote read/write) timeout (manager only) .. 22

6.3 Status of all nodes .. 24

Last known state of Node 1 ... 24

Last known state of Node X ... 24

6.4 NMT Master Message .. 24

Transmit NMT (manager only)... 24

6.5 Manager: Automatic Node Scan .. 25

7 C++ Programming Example.. 26

8 Java Programming Example ... 27

4 CANopenIA-MGR-DLL User Manual

 2 System Overview

The CANopenIA-MGR is a minimal CANopen Manager that gives the host quick and easy

access to a network of CANopen devices.

2.1 CANopenIA-MGR: Minimal CANopen Manager

This library implements a minimal CANopen Manager. The configuration requirements

are minimal, as the Manager auto detects the devices. It then scans all vital communica-

tion parameters and configures itself to consume and produce all matching CAN messag-

es (CANopen PDO communication).

CANOPENIA MANAGER LIBRARY

The host program receives simple serial indications with new data arriving (indicates

from which node ID and which data object by index and subindex) and may use com-

mands to send data (also based on node ID, index and subindex of data object) to the

connected devices.

Note that only PEAK USB CAN interfaces are supported. If you need support for another

type of CAN interface, please contact us.

5 System Overview

2.2 CANopen Object Dictionary

As required by any CANopen device, the CANopenIA-MGR implements a CANopen Object

Dictionary (OD) that contains all configurations of the chip itself as well as all the process

data communicated. This OD is available to the CANopen network as well as to the host.

Which OD entries are present in the CANopenIA depends on its configuration.

2.3 CANopen Manager

In CANopen, managers provide several functionalities. The ones provided by CANopenIA

are listed in this section.

SDO Client

The CANopenIA-MGR supports SDO client services. Once such a CANopenIA device is up

and running (CANopen state operational), it may send CANopen SDO (Service Data Ob-

ject) read and write requests to the nodes connected to the CANopen network. This

gives the host application read and write access to all the Object Dictionaries of all con-

nected nodes.

Note that in regular CANopen this means that this device uses the regular SDO client

channels used by a CANopen Manager. DO NOT use this mode, when another CANopen

Manager is present and using these channels at the same time.

NMT Master and Heartbeat monitoring

The CANopenIA-MGR software also provides the CANopen NMT (Network Management)

Master functions to control the individual nodes connected. The manager can autostart

known devices to facilitate a quick start up of CANopen systems.

A default heartbeat time and timeout monitoring can be automatically activated. If de-

vices are lost (no more heartbeat received), the master automatically transmits a reset

request to these nodes for automated recovery support.

Automated PDO handling

The minimal CANopen manager supports an automated PDO (Process Data Object) han-

dling. PDO configurations of connected devices are analyzed and activated. The host is

informed about every PDO received from all devices. The information passed on to the

host for data received includes node ID, object info (index, subindex) and the data.

6 CANopenIA-MGR-DLL User Manual

 3 API Overview

Two APIs are provided, an object-orientated (OO) API for C++ users and a “flat” API for C

and Java users. The functionality provided is identical. JNA can be used from Java to

access the library functions.

The OO API is divided up into two classes, called CANopenIAMgr and SerialProtocol.

Class Description

CANopenIAMgr Handles initialization and de-initialization of the library. Must always

be called when starting to use the library and after use of the library is

finished.

SerialProtocol Provides access to the manager functionality, for example accessing

the object dictionary of the manager or other nodes on the network,

resetting the manager, sending network management requests, etc.

The flat API uses the same division however the class names are part of the function

name. Here is an example.

API Example Function Call

OO CANopenIAMgr::Start()

Flat C_CANopenIAMgr_Start()

The flat function names are formatted as follows:

C_<classname>_<functionname>

This allows any function to be easily transposed from one API to the other.

7 API Overview

3.1 Initialization

The following sequence is used to initialize the manager.

C/Java:

C_CANopenIAMgr_Init(Bitrate, NodeId);

C_CANopenIAMgr_Start();

C_SerialProtocol_Init();

C_SerialProtocol_Connect();

C++:

CANopenIAMgr *Mgr = new CANopenIAMgr(Bitrate, NodeId);

Mgr->Start();

SerialProtocol *SerialProto = new SerialProtocol();

SerialProto->Connect();

3.2 DeInitialization

The following sequence is used to deinitialize the manager.

C/Java:

C_SerialProtocol_Disconnect();

C_SerialProtocol_DeInit();

C_CANopenIAMgr_Stop();

C_CANopenIAMgr_DeInit();

C++:

SerialProto->Disconnect();

delete SerialProto;

Mgr->Stop();

delete Mgr

8 CANopenIA-MGR-DLL User Manual

 4 API Function Summary

This section summarizes the functionality provided by the CANopenIA-MGR-DLL. For

more details see the SerialProtocol.h header file.

4.1 New Data arrived indication

New process data arrived from the CANopen network. The node ID of the sender (if

known), the Object Dictionary entry in question and the new data is part of this indica-

tion.

Language Prototype

C void NewData(UNSIGNED8 nodeid, UNSIGNED16 index,

UNSIGNED8 subindex, UNSIGNED16 length, UNSIGNED8

*data);

C++ static void NewData(UNSIGNED8 nodeid, UNSIGNED16

index, UNSIGNED8 subindex, UNSIGNED16 length, UN-

SIGNED8 *data);

Java public static void NewData(byte NodeID, int Index,

byte Subindex, int DataLength, Pointer Data,

Pointer Param);

9 API Function Summary

Parameter Description

nodeid The ID of the node sending the data

index Index of the object dictionary entry in the node

subindex Subindex of the object dictionary entry in the node

length Length of data data

data The data

4.2 Write to a local Object Dictionary entry command

Writes data to one local Object Dictionary entry. Data size is indicated via length field of

lower communication layer (see message definition).

Language Prototype

C UNSIGNED32 C_SerialProtocol_WriteLocalOD(UNSIGNED16 in-
dex, UNSIGNED8 subindex, UNSIGNED32 datalength, UNSIGNED8
*data)

C++ UNSIGNED32 SerialProtocol::WriteLocalOD(UNSIGNED16 in-
dex, UNSIGNED8 subindex, UNSIGNED32 datalength, UNSIGNED8
*data)

Java long C_SerialProtocol_WriteLocalOD(short index, byte sub-
index, int datalength, Pointer data)

10 CANopenIA-MGR-DLL User Manual

Parameter Description

index The index of the object dictionary entry to write to

subindex The subindex of the object dictionary entry to write to

datalength Number of bytes to write

data Data to write

The return value is ERROR_NOERROR or an error code, ERROR_xxx.

4.3 Read from a local Object Dictionary entry command

Request to read data from one Object Dictionary entry. Data size is indicated via length

field of lower communication layer.

Language Prototype

C UNSIGNED32 C_SerialProtocol_ReadLocalOD(UNSIGNED16 in-
dex, UNSIGNED8 subindex, UNSIGNED32 *datalength, UNSIGNED8
*data)

C++ UNSIGNED32 SerialProtocol::ReadLocalOD(UNSIGNED16 index,
UNSIGNED8 subindex, UNSIGNED32 *datalength, UNSIGNED8
*data)

Java long C_SerialProtocol_ReadLocalOD(short index, byte sub-
index, Pointer datalength, Pointer data)

Parameter Description

index The index of the object dictionary entry to read from

subindex The subindex of the object dictionary entry to read from

datalength When called set to the maximum number of bytes to read. On return

holds the number of bytes read

data Filled with read data

The return value is ERROR_NOERROR or an error code, ERROR_xxx.

11 API Function Summary

4.4 Write to a remote ObjectDictionary entry command

Writes data to one Object Dictionary entry of a remote node (using SDO client access).

Data size is indicated via length field of lower communication layer

Language Prototype

C UNSIGNED32 C_SerialProtocol_WriteRemoteOD(UNSIGNED8
nodeid, UNSIGNED16 index, UNSIGNED8 subindex, UNSIGNED32
datalength, UNSIGNED8 *data)

UNSIGNED32

C_SerialProtocol_WriteRemoteODExtended(UNSIGNED8 nodeid,
UNSIGNED16 index, UNSIGNED8 subindex, UNSIGNED32
datalength, UNSIGNED8 *data)

C++ UNSIGNED32 SerialProtocol::WriteRemoteOD(UNSIGNED8 no-
deid, UNSIGNED16 index, UNSIGNED8 subindex, UNSIGNED32
datalength, UNSIGNED8 *data)

UNSIGNED32 SerialProto-
col::WriteRemoteODExtended(UNSIGNED8 nodeid, UNSIGNED16
index, UNSIGNED8 subindex, UNSIGNED32 datalength, UN-
SIGNED8 *data)

Java long C_SerialProtocol_WriteRemoteOD(byte nodeid, short
index, byte subindex, int datalength, Pointer data)

long C_SerialProtocol_WriteRemoteODExtended(byte nodeid,
short index, byte subindex, int datalength, Pointer data)

12 CANopenIA-MGR-DLL User Manual

Parameter Description

nodeid The ID of the node to write to

index The index of the object dictionary entry to write to

subindex The subindex of the object dictionary entry to write to

datalength The number of bytes to write

data Data to write

The “extended” versions are non-blocking. They return immediately and on completion

of the write the SDO Request Complete callback function is called.

The return value is ERROR_NOERROR or an error code, ERROR_xxx.

Language Prototype

C void SDORequestComplete(UNSIGNED8 nodeid, UN-

SIGNED32 result);

C++ static void SDORequestComplete(UNSIGNED8 nodeid,

UNSIGNED32 result);

Java public static void SDORequestComplete(byte NodeID,

int Result);

Parameter Description

nodeid The ID of the node that was written to

Result The result of the write operation, SDOERR_OK or SDOERR_xxx

4.5 Read from a remote Object Dictionary entry com-
mand

Request to read data from a remote Object Dictionary entry (using SDO client access,

upload).

Language Prototype

C UNSIGNED32 C_SerialProtocol_ReadRemoteOD(UNSIGNED8 no-
deid, UNSIGNED16 index, UNSIGNED8 subindex, UNSIGNED32 *
datalength, UNSIGNED8 *data)

13 API Function Summary

UNSIGNED32

C_SerialProtocol_ReadRemoteODExtended(UNSIGNED8 nodeid,
UNSIGNED16 index, UNSIGNED8 subindex, UNSIGNED32 *
datalength, UNSIGNED8 *data)

C++ UNSIGNED32 SerialProtocol::ReadRemoteOD(UNSIGNED8 no-
deid, UNSIGNED16 index, UNSIGNED8 subindex, UNSIGNED32
*datalength, UNSIGNED8 *data)

UNSIGNED32 SerialProto-
col::ReadRemoteODExtended(UNSIGNED8 nodeid, UNSIGNED16
index, UNSIGNED8 subindex, UNSIGNED32 *datalength, UN-
SIGNED8 *data)

Java long C_SerialProtocol_ReadRemoteOD(byte nodeid, short
index, byte subindex, Pointer datalength, Pointer data)

long C_SerialProtocol_ReadRemoteODExtended(byte nodeid,
short index, byte subindex, Pointer datalength, Pointer
data)

Parameter Description

nodeid The ID of the node to read from

index The index of the object dictionary entry to read from

subindex The subindex of the object dictionary entry to read from

datalength When called set to the maximum number of bytes to read. On return

holds the number of bytes read

data Filled with read data

The “extended” versions are non-blocking. They return immediately and on completion

of the read the SDO Request Complete callback function is called.

The return value is ERROR_NOERROR or an error code, ERROR_xxx.

See “Write to a remote Object Dictionary entry command“ for details of the callback

function.

14 CANopenIA-MGR-DLL User Manual

 5 Minimal Manager SDO & PDO Handling

The CANopenIA Minimal Manager version simplifies how an application uses CANopen

communication. Here all data is only referred to by a node ID and the Object (Index and

Subindex) to address ab object in a node’s object dictionary.

Using the write and read to a remote object dictionary functions, the host system can

read and write all objects in a network.

In addition, the host system receives event notifications, if data came in from a remote

object. Again, referred to by the node ID the data comes from and the object dictionary

entry (Index and Subindex).

If your application is generic and does not require optimized communication (e.g. to

lower the bus load for communication or achieve shorter reaction times), the this is all

you need to know.

5.1 Communication options

The default CANopen communication mode used by the CANopenIA-MGR is the SDO

communication (Service Data Objects). Here the manager sends one read/write request

for a single object of a node and receives one response.

Internally, the manager scans detected devices for their PDO (Process Data Object) con-

figuration. The scanned information is used by the minimal manger to configure itself for

receiving all Transmit PDOs transmitted by the devices and for transmission of all Receive

PDOs to the devices.

Receiving TPDO data from the devices

The application requires no knowledge about the Transmit PDO configuration of the

devices. Once self-configured, the minimal manger receives all PDOs generated by the

devices and converts them into the corresponding “New Data” indication events towards

the host or application. The application automatically receives all PDO data.

For each object received, the host/application is informed about:

 The node ID which sent the data

 Which Object of that node was received (Index/Subindex)

 The data itself

15 Minimal Manager SDO & PDO Handling

Sending data to the devices

The application addresses the data in the same fashion as for received data. It uses the

WriteRemoteOD functionality and informs the CANopenIA Manager about:

 The node ID to which the data needs to be send

 Which Object of that node is it going to (Index/Subindex)

 The data itself

The manager automatically determines if this data can be send by PDO or if a SDO needs

to be triggered. As PDOs can have multiple objects mapped (multiple object contained in

one CAN message) all mapped items must be written at least once, before the PDO can

be transmitted by the manager. This is required to prohibit transmission of uninitialized

data/commands to a CANopen device.

We recommend that once the application receives the call-back that a mode has been

scanned, it writes once to all objects of that device that can be written to, to ensure all

data has been initialized.

PROCESSING REMOTE DATA WRITE REQUESTS

The flow chart above illustrates how the manager processes data write requests to

nodes on the network. If the data written is not part of any PDO, it gets written to the

16 CANopenIA-MGR-DLL User Manual

node using a SDO client write access. Once the SDO response comes back from the node,

this response is passed on to the host.

Otherwise the data is copied to the appropriate buffer and the PDO update timer is re-

started with every data write to this PDO. The PDO gets queued/triggered ready for

transmission once the PDO update timer expires.

Internally, the CANopenIA system continuously checks if a PDO requires transmission

(see next flow chart “PDO trigger task”.

PDOs are only processed for transmission, if data is available and the update time ex-

pired.

PDO TRIGGER TASK

If both the default event and inhibit times (objects [5F01h,05h] and [5F01h,06h], see

section 6.2) are zero, then a PDO is triggered for transmission whenever the

update time expires (time since last write by the host) or the last mapped entry

has been written.

Once set (non-zero), the event and inhibit times work as defined in CANopen:

If the inhibit time is set (non-zero) and the event time is zero, then any repetitive

transmission is only transmitted, if the time since last transmission is at least as

long as the inhibit time.

17 Minimal Manager SDO & PDO Handling

If the event time is set (non-zero) and the inhibit time is zero, then the PDO is

transmitted cyclically, no matter if the data has been updated by the application or

not.

If both times are set, then they are combined. If triggered by host (expiration of

update time), then the PDO gets transmitted, observing the inhibit time. Without

host triggering, the PDO is transmitted cyclically based on the event time.

18 CANopenIA-MGR-DLL User Manual

 6 Object Dictionary entries in the manu-

facturer specific area

The manufacturer specific area of the Object Dictionary provides direct access to

configuration data. These can be accessed using the read and write local com-

mands. Syntax used in listing below:

Name
[index,subindex] (data type, access type)

Description

6.1 CANopenIA Device Status

The entries in this section give the host access to the current state of the local CANo-

penIA device. All these entries are read-only.

Device status: own node ID
[5F00h,01h] (UNSIGNED8, RO)

The node ID of the local CANopenIA device

Device status: own NMT state
[5F00h,02h] (UNSIGNED8, RO)

The current CANopen state of the local CANopenIA device. See section 0for a list

of all defined states.

Device status: own HW state
[5F00h,03h] (UNSIGNED8, RO)

Bit: 0: INIT – set after a completed initialization

 1: CERR – set, if a CAN bit or frame error occurred

 2: ERPA – set, if a CAN "error passive" occurred

 3: RXOR – set, if a receive queue overrun occurred

 4: TXOR – set, if a transmit queue overrun occurred

 5: CANFD – set, if CAN hardware supports CAN FD

 6: TXBSY – set, if Transmit queue is not empty

 7: BOFF – set, if a CAN "bus off" error occurred

Device status: own HW/FW mode
[5F00h,04h] (UNSIGNED32, RO)

Bit: 0..7: 00h: Custom hardware

 01h: CANgineBerry

19 Object Dictionary entries in the manufacturer specific area

 02h: CANgineLight

 03h: CANgineBT

 04h: PCAN-RS232

 05h: PCAN-xxx with PCAN-Basic API

Bit: 8..15: 00h: Custom firmware

 01h: CANopenIA Device

 02h: CANopenIA Manager

 03h: CANopenIA 447izer

Bit: 16..23: Firmware major version

Bit: 24..31: Firmware minor version

Chip serial number (where available)
[5F00h,05h] (UNSIGNED128/DOMAIN, RO)

The serial number of the microcontroller hosting the CANopenIA software.

6.2 CANopenIA Device Control

The entries in this section can be written to and allow the host to actively control

the local CANopenIA device or manager.

Device control: Reset
[5F01h,01h] (UNSIGNED8,WO)

Reset the CANopenIA chip, module or library. Writing129 issues a soft reset, 130

a hard reset.

Device control 447: Sleep Objection
[5F01h,02h] (UNSIGNED8,RW)

Activate the CiA 447 sleep objection (set to 1 to object).

Device control 447: Ignore PDOs from VD
[5F01h,03h] (UNSIGNED32,RW)

For If a bit is set in this value, then PDOs coming from the corresponding virtual

device (see vdfg number in CiA-447) are ignored. For example: set bit 7 to ignore

all PDOs coming from GPS devices.

Manager control (manager only)
[5F01h,04h] (UNSIGNED32,RW)

Bit: 0: KEEP_OP - set to keep nodes operational

 (will send appropriate NMT command automatically)

 1: HB receive all - set to activate automated heartbeat monitoring

20 CANopenIA-MGR-DLL User Manual

 (default HB times below are used)

 2: PDO receive all - set to activate automated device TPDO handling

 (scan devices for their transmit PDOs and receive them all)

 3: PDO transmit all - set to activate automated device RPDO handling

 (scan devices for their receive PDOs and produce them all)

 4: Use scanned entries – set to activate caching of scanned entries.

 If requested by host, reply from cache.

 5: Enforce remote write SDO – set to enforce SDO write access when.

 writing to an OD entry of a remote node, do not send as TPDO.

 6: Manual TPDO trigger – set to activate manual transmit PDO triggering

 (use [5F01h,0Ch] to trigger)

 7-15: Reserved

 16-22: Number of nodes supported for heartbeat monitoring and

 SDO client handling

 23: Reserved

 24-30: Number of nodes supported for automated PDO handling

 31: Reserved

Default heartbeat producer time (manager only)
[5F01h,05h] (UNSIGNED16,RW)

Use this default event time (in milliseconds) for all PDO transmissions by the

manager.

Default heartbeat consumer time (manager only)
[5F01h,06h] (UNSIGNED16,RW)

Use this default event time (in milliseconds) for all PDO transmissions by the

manager.

Default PDO update time (manager only)
[5F01h,07h] (UNSIGNED8,RW)

When the manager updates PDO transmission data, this update timeout is started

before triggering the PDO for transmission. This allows the application to update

all objects of a PDO before its transmission is triggered. Note that this time is not

used, when the PDO event time (see below), is non-zero.

Default PDO transmission event time (manager only)
[5F01h,08h] (UNSIGNED16,RW)

Use this default event time (in milliseconds) for all PDO transmissions by the

manager.

21 Object Dictionary entries in the manufacturer specific area

Default PDO transmission inhibit time (manager only)
[5F01h,09h] (UNSIGNED16,RW)

Use this default inhibit time (in 100
th
 of microseconds) for all PDO transmissions

by the manager.

Manager re-scan device (manager only)
[5F01h,0Ah] (UNSIGNED8,WO)

Writing a node ID to this entry re-triggers the auto-scan mechanism for this node.

The manger will start a new node scan for this device.

Bit: 0-6: Node ID to scan

 7: reserved

Device and Manager generic CAN Rx / Tx
[5F01h,0Bh] (UNSIGNED8,RW)

This feature enables the support of generic CAN messages, not handled by the

local CANopen implementation.

Bit: 0-3: Generic CAN transmit

 0: disabled

 1: Condensed access via object 5F0Ch

 4-7: Generic CAN receive

 0: disabled

 1: Condensed access via object 5F0Ch

CAN messages received, that are not processed by the local CANopen task are

passed on to the host as a write to the local Object Dictionary entry 5F0Ch:

 Node ID: 0

 Index: 5F0Ch

 Subindex: Length of CAN message in bytes (0-8)

 Len: 2 + Length of CAN message in bytes (0-8)

 Data: First 2 byte: CAN ID
 Followed by the data bytes of the CAN message

To transmit a generic CAN message, execute a write to the local object dictionary

entry 5F0Ch:

 Index: 5F0Ch

 Subindex: Length of CAN message in bytes (0-8)

 Len: 2 + Length of CAN message in bytes (0-8)

 Data: First 2 byte: CAN ID

 Followed by the data bytes of the CAN message

22 CANopenIA-MGR-DLL User Manual

Testing with the COIA utility for the CANgineBerry

Activate the feature by a write to [5F01h,0Bh]:

-w 0x5F01,0x0B,0x01,0x11

To transmit a generic CAN message, use the “--tx-can” parameter, passing the

CAN ID, the length and the data bytes:

--tx-can 0x150,4,0x11,0x22,0x33,0x44

This produces a 4-byte CAN message with ID 150h and the four data bytes 11h

to 44h.

Use the monitoring “-m” parameter to monitor incoming data and messages.

Manual PDO trigger (manager only)
[5F01h,0Ch] (UNSIGNED16,WO)

Manually trigger the transmission of a PDO. This is the only trigger method, if the

automatic PDO triggering mechanism is disabled ([5F01h,04h] bit 6).

To trigger a PDO, write node ID and PDO number into this entry. The PDO trig-

gered is the one matching the Receive PDO of that node.

Bit: 0-7: PDO number, starting at 1

 8-14: Node ID, starting at 1

 14: Reserved

Testing with the COIA utility for the CANgineBerry

Node number 5 is a digital I/O node (CiA 401)

-w 0x5F01,4,4,0x0000003F

--node-write 5,0x6000,1,1,0x55

--node-write 5,0x6000,2,1,0x66

--node-write 5,0x6000,3,1,0x77

--node-write 5,0x6000,4,1,0x88

-w 0x5F01,0x10,2,0x0501

In first line we enable automatic TPDO handling, the next four lines write data into

the PDO and the last line triggers the PDO (node 5, PDO 1).

SDO client (remote read/write) timeout (manager only)
[5F01h,0Dh] (UNSIGNED16,RW)

The default SDO client timeout is hard-coded to 150 milliseconds. If you experi-

ence SDO client timeouts when talking to slow remote devices, you can set a

23 Object Dictionary entries in the manufacturer specific area

custom timeout value in milliseconds here. A value of 0 is ignored and means that

the hard-coded default timeout is used.

24 CANopenIA-MGR-DLL User Manual

6.3 Status of all nodes

Only available with CANopenIA-MGR and 447 versions.

Last known state of Node 1
[5F04h,01h] (UNSIGNED8, RO)

The last known state of node 1, see list below for all defined values.

Last known state of Node X
[5F04h,X] (UNSIGNED8, RO)

The last known state of this node (allowed range 1 to 127), see list below for all

defined values.

The following values are defined:

 NODESTATUS_BOOT 0x00

 NODESTATUS_STOPPED 0x04

 NODESTATUS_OPERATIONAL 0x05

 NODESTATUS_PREOP 0x7F

 NODESTATUS_EMCY_NEW 0x80

 NODESTATUS_EMCY_OVER 0x81

 NODESTATUS_HBACTIVE 0x90

 NODESTATUS_HBLOST 0x91

 NODESTATUS_SCANSTARTED 0x9F

 NODESTATUS_SCANCOMPLETE 0xA0

 NODESTATUS_SCANABORTED 0xA8

 NODESTATUS_RESETAPP 0xB0

 NODESTATUS_RESETCOM 0xB1

 NODESTATUS_SLEEP 0xF0

 NODESTATUS_BOOTLOADER 0xF1

6.4 NMT Master Message

Only available with CANopenIA-MGR version. An NMT Master message can be

triggered by writing to [5F0Ah,01h].

Transmit NMT (manager only)
[5F0Ah,01h] (UNSIGNED16, WO)

The high byte contains the destination node id (1-127) or zero for “all” nodes.

The low byte contains the NMT command:

25 Object Dictionary entries in the manufacturer specific area

01h: Switch to operational state

02h: Switch to stopped state

80h: Switch to pre-operational state

81h: Execute an application reset

82h: Execute a communication reset

6.5 Manager: Automatic Node Scan

In CANopen Manager or CiA 447 mode, the device automatically scans nodes

found on the network for often used entries. This data is available, as soon as a

node's state is reported as NODESTATUS_SCANCOMPLETE.

If caching is enabled in the Manager Control word (Object [5F01h,04h]), then the

CANopenIA device will return the pre-scanned entries without re-requesting these

from the device via CANopen.

Example: If the host requests the object [1018h,1] (vendor id) from node 3 by

sending the ReadRemoteOD command, then the CANopenIA will directly reply

with the value, if it is in the local cache.

26 CANopenIA-MGR-DLL User Manual

 7 C++ Programming Example

The C++ example can be found in the folder TestHarness-C. The project file provided is

for Visual Studio 2017.

The example demonstrates starting the manager, resetting all nodes, reading from the

manager object dictionary, reading from a node’s object dictionary and transmission of

real-time data.

27 Java Programming Example

 8 Java Programming Example

The Java example can be found in the folder TestHarness-Java. The project provided is

for Netbeans 8.2.

The example demonstrates starting the manager and reading from the manager’s object

dictionary.

The example also demonstrates how JNA can be used to access the library from Java. A

complete declaration of the API is provided wrapped in a class called “ManagerLib”. Here

is an example of calling a function:

ManagerLib MgrLib = ManagerLib.INSTANCE;

MgrLib.C_CANopenIAMgr_Init(125, 0x40)

	This functionality is also implemented in the MGR firmware of the CANgineBerry.
	2 System Overview
	2.1 CANopenIA-MGR: Minimal CANopen Manager
	2.2 CANopen Object Dictionary
	2.3 CANopen Manager
	SDO Client
	NMT Master and Heartbeat monitoring
	Automated PDO handling

	3 API Overview
	3.1 Initialization
	3.2 DeInitialization

	4 API Function Summary
	4.1 New Data arrived indication
	4.2 Write to a local Object Dictionary entry command
	4.3 Read from a local Object Dictionary entry command
	4.4 Write to a remote ObjectDictionary entry command
	4.5 Read from a remote Object Dictionary entry command

	5 Minimal Manager SDO & PDO Handling
	5.1 Communication options
	Receiving TPDO data from the devices
	Sending data to the devices

	6 Object Dictionary entries in the manufacturer specific area
	6.1 CANopenIA Device Status
	6.2 CANopenIA Device Control
	6.3 Status of all nodes
	6.4 NMT Master Message
	6.5 Manager: Automatic Node Scan

	7 C++ Programming Example
	8 Java Programming Example

