

i Contents

CANcryptFD NXP LPC54618

Software Manual

for software of 6-AUG-2018

 A manual from

COPYRIGHT 2018 BY EMBEDDED SYSTEMS ACADEMY GMBH

ii CANcryptFD

Jointly published by

Embedded Systems Academy, Inc. Embedded Systems Academy GmbH

1250 Oakmead Parkway, Suite 210 Bahnhofstraße 17

Sunnyvale, CA 94085, USA 30890 Barsinghausen, Germany

All rights reserved. No part of the contents of this book may be reproduced or

transmitted in any form or by any means without the prior written consent of

Embedded Systems Academy GmbH, except for the inclusion of brief quotations

in a review.

Limitation of Liability

Neither Embedded Systems Academy (ESA) nor its authorized dealer(s) shall be

liable for any defect, indirect, incidental, special, or consequential damages,

whether in an action in contract or tort (including negligence and strict liability),

such as, but not limited to, loss of anticipated profits or benefits resulting from

the use of the information or software provided in this book or any breach of any

warranty, even if ESA or its authorized dealer(s) has been advised of the possibili-

ties of such damages.

The information presented in this book is believed to be accurate. Responsibility

for errors, omission of information, or consequences resulting from the use of this

information cannot be assumed by ESA. ESA retains all rights to make changes to

this book or software associated with it at any time without notice.

iii Contents

1 Contents

1 Contents .. iii

2 Introduction .. 1

2.1 About this manual ... 1

2.2 CANcrypt(FD) features provided ... 1

2.3 Powering up .. 1

2.4 Initial key generation .. 2

2.5 Project file structure ... 2

Cc_CANCrypt .. 2

Cc_user ... 3

source ... 3

3 Definitions and structures .. 4

3.1 Common CANcryptFD parameters.. 4

3.1.1 Device numbering and addressing ... 4

Address, Cc_DEVICE_ID .. 4

3.1.2 The security record and the digital signature 4

3.1.3 The Keys .. 6

Key ID ... 6

Key length ... 7

3.1.4 Status .. 8

Status.. 8

3.1.5 Controls .. 8

Request and commands ... 8

3.1.6 Methods ... 9

Method ... 9

3.1.7 Functionality ... 9

Functionality ... 9

3.1.8 Timings ... 10

iv CANcryptFD

Timeout ... 10

3.1.9 CANcryptFD error counter .. 11

3.2 CANcryptFD secure message table ... 13

3.2.1 Pairing and grouping implementation note 14

4 CANcryptFD customizable functions .. 16

4.1 Collect random numbers ... 16

4.2 Bit mixup ... 17

4.3 Generate dynamic key .. 19

4.3.1 Grouping: Take random values from grouping message 19

4.3.2 Generate one-time pad .. 19

4.4 Updating the dynamic shared key .. 20

4.4.1 Grouping: Key update based on secure heartbeat 20

4.5 Secure Heartbeat and Messaging ... 20

4.5.1 Generate signature ... 20

4.5.2 Verify signature ... 20

4.6 Encryption and decryption .. 21

4.6.1 Secure message encryption .. 21

4.6.2 Secure message decryption .. 22

5 CANcryptFD Programming .. 23

5.1 C include files definitions .. 23

5.1.1 CC_user_config.h .. 23

5.1.2 CANcrypt_types.h ... 26

5.1.3 CANcrypt_api.h ... 26

CANcrypt system restart .. 27

Identification.. 28

Closing a CANcrypt connection .. 28

Secure messaging .. 29

Misc functions .. 30

v Contents

Cyclic processes .. 31

CAN receive triggered processes .. 31

5.2 Low-level driver interfacing .. 32

5.2.1 CAN interface access .. 32

Moving CAN messages ... 34

5.2.2 Random numbers, timer and timeout .. 36

5.2.3 Non-Volatile memory access .. 38

Key hierarchy access .. 38

5.3 Secure message configuration .. 39

5.4 Driver implementation ... 41

5.4.1 CAN queue / FIFO ... 41

Transmit FIFO / queue .. 42

Receive FIFO / queue ... 44

5.5 Grouping Demo ... 46

1 Introduction

2 Introduction

2.1 About this manual

This manual focus is on the CANcryptFD software implementation as provided by

Embedded Systems Academy for the NXP LPC54618 microcontroller.

It does not contain detail documentation of the CANcrypt protocol and mecha-

nism. For more information on these, see the book “Implementing scalable CAN

Security with CANcrypt” ISBN 978-0-9987454-0-4 or ISBN 978-0-9987454-1-1.

2.2 CANcrypt(FD) features provided

 CANcryptFD primary functionality is the CANcrypt grouping mode with the secure

heartbeat and dynamic key update mechanism for a maximum of up to 16 partic-

ipants. More than 16 devices can use CANcryptFD, however, only up to 16 devices

can actively participate in the secure heartbeat and key update.

All devices can participate in secure messaging, if they follow (read-only) the se-

cure heartbeat and key updates.

2.3 Powering up

On power up, the devices actively participating in the dynamic key generation

process start a secure grouping cycle, as in the classical CANcrypt grouping. All

nodes that wish to participate in secure communications must monitor the key

generation processes to maintain a local copy of the dynamic key. This cycle is

illustrated in the figure below. All participating devices exchange random values

which are used as an initialization vector for generating the next key from a previ-

ous or known key.

2 CANcryptFD

GENERATING AN INITIALIZATION VECTOR FOR KEY GENERATION

Once the dynamic key is generated, all devices (also those not actively participat-

ing in the key generation) may start using it by transmitting secure CAN FD mes-

sages.

2.4 Initial key generation

CANcryptFD uses a new method for the initial grouping and key generation. The

initial grouping cycle for key generation is based on a default key. Then a total of 3

secure heartbeat cycles are executed, each re-generating the dynamic key. After

the three key re-generation cycles, the current shared dynamic key is saved as a

permanent initial key to the grouped devices.

2.5 Project file structure

The software modules are split into the following directories:

Cc_CANCrypt

This directory contains all source files implementing the core functionality of

CANcryptFD. Include them all into your project.

3 Introduction

We recommend to not make changes to any of these if you want to be able to

easily install future security updates.

Cc_user

This directory contains the user customizable files. Here you can modify and

adopt some of the key security functions to your special security requirements.

source

This directory contains the CANcryptFD demo implementation. Where keys are

hard coded, simple patterns have been used to easily recognize keys when de-

bugging.

For real implementations do not use default keys and do not use any recognizable

patterns. Preferably keys are generated based on true random numbers.

4 CANcryptFD

3 Definitions and structures

3.1 Common CANcryptFD parameters

In this section we describe the parameters required to maintain CANcryptFD.

3.1.1 Device numbering and addressing

Address, Cc_DEVICE_ID

In all CANcryptFD request or command messages, an address value from 1-127 is

used to the target a specific CANcryptFD device. A value of zero broadcasts to all

devices (for example, used by the identify request).

To simplify code optimizations, the addresses should be assigned incrementally

starting with 1. In the CANcryptFD implementation, a parameter can be set to the

“highest address used”. If this is set to a value below 14, CANcryptFD devices

using an address higher than that value must not be used.

3.1.2 The security record and the digital signature

Each secure CAN FD message has a security record embedded at the end of the

data field. The figure below shows the CAN FD frame with the location of the

security record.

THE CANCRYPT FD SECURITY RECORD

5 Definitions and structures

The default security record consists of four 16-bit values:

• Random data: increases entropy and decreases predictability of content

• Frame counter: to guard against re-play attacks, increases on transmit of

frame with same CAN ID, increment value is such, that four or more bits

change occur per count

• Status word: padding info, current key identification

• Signature: derived from a 64 or 128-bit checksum, encrypted, truncated

to 16 bits

As popular secure hash digests like SHA-256 are quite big, CANcrypt FD uses an

encrypted checksum, truncated as the digital signature to authenticate the mes-

sage. The figure below illustrates how it is generated (here, 16-bit signature and

64-bit key).

GENERATING THE DIGITAL SIGNATURE

First, a buffer the size of the key is initialized. Instead of an all-zero initialization, it

can also be based on another shared secret. For example, if the shared secret key

is larger than required (e.g. 128-bit key, but using 64-bit encryption method), then

the key could be split, one half used as main key, the other half as checksum ini-

tializer.

6 CANcryptFD

Second step, a checksum is build. The number of bits the checksum uses is equal

to the buffer width (64 or 128). It covers the CAN ID, the data field before the

security record and the security record without the signature.

Third step, the buffer gets encrypted using the current dynamic key.

Forth step, the checksum is truncated and the least-significant 16 bits of the buff-

er are used as the signature.

3.1.3 The Keys

CANcryptFD supports a number of permanent keys. This allows having multiple

keys per device, such as a manufacturer key for bootloader access, a system key

(created upon first startup of a CAN system), or further application-specific keys

or session-limited keys. For any key stored in non-volatile memory, the size is in

the range 128 –1024 bits.

The main keys used are the dynamic key and the permanent key. The permanent

key is the non-volatile stored key used for the initialization of the current secure

communication. The dynamic key is initialized from that permanent key (a direct

copy or generated using a common mixup function) and continuously modified

either based on the random bit-select cycles or via the bit-update request.

The last session key can store the dynamic key over a power cycle. If there is a

proper shut down procedure before power down, the dynamic key can be saved

as the last session key. On the next power up, the key is reloaded to the dynamic

key, drastically shortening the initialization phase.

To globally identify the keys, CANcryptFD uses 8-bit Key ID and Key length param-

eters. These values are used as described below.

Key ID

The Key ID is divided into a 3-bit major value and a 5-bit minor value.

The major value specifies one of eight key types and directly implements a key

hierarchy. Higher values have a higher authority. The key erase command can be

used only on keys that have the same or lower major value as the key currently in

use.

The minor value plus specifies 32-bit segments within the key.

The key length value determines, if a key is used by itself without modifications or

gets combined (mixed up) with the local serial number.

7 Definitions and structures

The values are mapped to UNSIGNED8 values. The major part uses the three most

significant bits, and the minor part uses the five least significant bits.

Default use Memory Key ID

major

Key ID

minor

Length (bit)

Reserved 7

Manufacturer key NVOL 6 0–31 128–1024

System Integration key NVOL 5 0–31 128–1024

Owner key NVOL 4 0–31 128–1024

User key NVOL 3 0–31 128–1024

Last group session key NVOL 2 0–15 128–512

Dynamic pair session key RAM 1 0–15 128–512

Dynamic group session key RAM 0 0–15 128–512

THE KEY HIERARCHY

Key length

The Key Length is of type UNSIGNED8. To support a wide variety of key lengths

with 8-bit encoding, the highest bit determines if the size is specified in bits or in

other units as shown in the table below (Key Length Values Supported by CAN-

cryptFD).

Value Interpretation

00h Reserved

01h–20h Key length in bits, 1–32

21h–7Fh Reserved

80h Single bit of dynamic key

81h–A0h Key length in multiples of 32 bits, 1–32 (32–1024 bits)

A1h–C0h As above, but key is combined with serial number

C1h–FFh Custom, manufacturer specific sizes

8 CANcryptFD

KEY LENGTH VALUES SUPPORTED BY CANCRYPTFD

3.1.4 Status

This section describes the status information that must be provided by all partici-

pating CANcryptFD communication partners.

Status

The CANcryptFD status byte provides the following information and is the same

for both the CANcryptFD devices:

• Bits 0–1: Pairing status, unused

• Bits 2–3: Grouping status
 0: not grouped
 1: grouping in progress
 2: grouped, secure heartbeat enabled
 3: grouping error

• Bits 4–5: Result of last command or request
 0: unknown
 1: success
 2: ignored
 3: failure

• Bit 6: Reserved

• Bit 7: Key generation in progress
 When set, this device is participating in key generation

3.1.5 Controls

This section describes the control commands and requests available to the CAN-

cryptFD devices.

Request and commands

The 4-bit request value is used in most CANcryptFD protocols.

Message Type Consumer

Address

Request

Abort event, response 1–15 0

Acknowledge response 1–15 1

Alert event 0 2

Identify event 0 3

9 Definitions and structures

Pairing/Grouping request, response 1–15 4

Unpairing/Ungroup request, response 1–15 5

Secure heartbeat Event 0 9

Save last session key event 0 15

REQUESTS USED BY CANCRYPTFD DEVICES

3.1.6 Methods

CANcryptFD supports a variety of algorithms and features. The parameters se-

lecting these are listed below. For more details about the specific algorithms used,

see chapter 6, CANcryptFD customizable functions.

Method

The 4-bit method parameter selects the base algorithm used to generate the

random bit and specifies a security method.

• Bits 0–1: Security functionality
 0: Basic security
 1: Regular security
 2: Advanced Security
 3: Custom security

The security settings influence the bit-generation cycle, authentication, and en-

cryption.

Authentication:

The signature used for messages is 16 bits. The signature is generated by the

combination of a checksum that is encrypted and truncated, in advanced mode by

AES-128.

Encryption:

The encryption is based on a mixup of the current dynamic key or AES-128 in

advanced mode.

3.1.7 Functionality

Individual CANcryptFD functionality may be enabled or disabled.

Functionality

If a corresponding bit is set, the functionality is enabled

10 CANcryptFD

• Bit 0: authentication used

• Bit 1: encryption used

• Bits 2–3: reserved

3.1.8 Timings

CANcryptFD uses various timings and timeouts. To minimize the number of defini-

tions, specific values are defined as a group.

Timeout

The 4-bit timeout value defines the timing and timeout options CANcryptFD uses:

• Bits 0–1: timing used
 0: fast
 1: medium
 2: slow
 3: custom timing

• Bits 2–3: reserved

Values 0–2 activate the defined timings in the table below, Timeouts Used by

CANcryptFD). Value 3 selects custom, manufacturer-specific timings.

CANcyrpt message timeout:

If a CANcryptFD message contains a request, requiring a response, then the

transmitter uses this timeout to wait for a response from the device addressed. If

no response is received within this time, the transmitter internally marks the

addressed device as not present.

Secure message timeout:

Every secure message combination using a preamble and one or multiple follow-

ing data messages have to transmit the messages back to back on the network.

On the receiving side the data message is only considered to be received in time,

if the time since reception of the preamble does not exceed this timeout.

Timeouts Fast Medium Slow

CANcryptFD message timeout

(request to response)

100 ms 200 ms 400 ms

Secure message timeout

(preamble to message)

25 ms 50 ms 100 ms

Secure heartbeat event time 250 ms 500 ms 1000 ms

11 Definitions and structures

(slowest repetition)

Secure heartbeat event timeout 500 ms 1 s 2 s

Secure heartbeat inhibit time

(fastest repetition)

50 ms 100 ms 250 ms

Secure heartbeat cycle timeout 75 ms 150 ms 333 ms

Bit select cycle time for

random delay method

25 ms 50 ms 100 ms

Bit select cycle time for direct re-

sponse method with no delay

10 ms 25 ms 50 ms

Bit select cycle random delay window 0–16 ms 0–32 ms 0–64 ms

DEFAULT TIMEOUTS USED BY CANCRYPTFD

Secure heartbeat event time and timeout:

The longest possible duration between two secure heartbeat cycles is defined by

the event time. A device is considered unsecure or missing if the time since the

last secure heartbeat transmission exceeds the timeout.

Secure heartbeat inhibit time and cycle timeout:

The shortest possible duration between two secure heartbeat cycles is defined by

the inhibit time. All devices may start a new secure heartbeat cycle at any time, as

long as they ensure that the inhibit time is met. If a secure heartbeat cycle start-

ed, than all active devices must join the cycle with their own secure heartbeat

within the cycle timeout. A device not participating in time is considered unsecure

or missing.

Bit select cycle time and delay window:

The key- or bit-generation cycle time is a fixed value, the CANcryptFD system tries

to determine one bit per cycle. If the method with delays is used (each participant

transmits their claim message randomly within a time window), then the maxi-

mum value for this delay is defined.

3.1.9 CANcryptFD error counter

CAN uses transmit and receive error counters to determine the “health” of an

individual CAN controller. When errors occur, the timers are incremented by a

number greater than 1. However, the timers are also decremented when com-

12 CANcryptFD

munication works fine. As a result, occasional errors are ignored. But if the coun-

ters keep increasing and hit limits, the CAN controller goes “passive” or eventually

“bus off,” which is a complete disconnection of the CAN controller from the net-

work.

Event Counter change

Successful reception of a secure message or

secure heartbeat

(no timeout, successful authentication)

If counter > 0, decrement

Secure Heartbeat failure

(timeout or authentication failure)

Set counter to 128

Intruder alert

(injected message with harmful data detected)

Set counter to 128

Intruder alert

(injected message with harmless data detected)

Increment counter by 63

Secure message authentication failure Increment counter by 63

Other error in secure message

(preamble timeout, receive without preamble)

Increment counter by 31

Repetitive request from same device to re-

initialize the dynamic key

Increment counter by 31

Any other alert event, CAN errors Increment counter by 15

CANCRYPTFD ERROR COUNTER CHANGES

In the same manner, CANcryptFD uses an UNSIGNED8 error counter to determine

the health of the CANcryptFD connection. The table below (CANcryptFD Error

Counter Changes) shows which events influence the error counter. Once the error

counter reaches 128 or higher, the CANcryptFD device unpairs, or disconnects

itself, from secure communication and uses the unpair protocol/status to inform

all other devices.

Once a device unpairs itself, it should not be allowed to immediately participate in

a re-pairing process. A generous timeout should be required before a retry of the

re-pairing starts. If the unpairing is a result of an attack, the intruder may try

13 Definitions and structures

brute-force methods to participate in pairing processes. To slow such attacks,

every failed pairing attempt should cause a delay of increasing seconds.

Even if your application requires constant operation, keep in mind that once we

reach the state of unpairing, we are either under attack or something went seri-

ously wrong (device disconnected or powered down).

3.2 CANcryptFD secure message table

Datatype Name Use

UNSIGNED32 CAN ID Match CAN ID of the secure message. Set bit 30

to indicate that a 29-bit CAN ID is used.

UNSIGNED32 CAN ID Mask CAN ID mask value (id & mask == match)

UNSIGNED8 First encrypted

byte

If using encryption, the first byte to which

encryption is applied (starting at zero).

UNSIGNED8 Number of enc-

rypted bytes

If using encryption, the number of en-

crypted bytes.

UNSIGNED4 Functionality CANcrpytFD functionality used for this

message.

UNSIGNED4 Method CANcryptFD methods used for this mes-

sage.

UNSIGNED4 Producer CANcryptFD address of the device produc-

ing this message (1–14).

UNSIGNED4 Reserved

ENTRY IN THE SECURE MESSAGE LIST TABLE

14 CANcryptFD

The last entry of the table is different, see below.

Datatype Name Use

UNSIGNED32 End of table Set to FFFF FFFFh to mark the end of the

table.

UNSIGNED16 Reserved Set to FFFFh

UNSIGNED16 Checksum Checksum covering all table entries with-

out the End of Table entry.

LAST ENTRY IN THE SECURE MESSAGE LIST TABLE

Note that for optimization individual devices may only store those elements of

the table that they require. If a message is not used by a local device, its details do

not need to be known by the device.

Each element in the table is 8 bytes and provides details about a secure message

handled by CANcryptFD. The last entry in the table must have a CAN ID of FFFF

FFFFh to indicate the end of the table. The last record also uses a 16-bit checksum

for the entire table.

If a high security level is desired, the configuration options for the secure message

table should be limited. An intruder with access to this level (being able to edit

the table) could reconfigure a device to listen for different messages other than

those originally intended.

The checksum method used shall be the highest level method supported by a

device. If a device supports only the regular security method, the checksum

method of that level is used. The checksum initializer for this checksum shall be

FFFFh.

For better optimization, each device uses two local tables, one for secure messag-

es received by this device and one for secure messages transmitted.

3.2.1 Pairing and grouping implementation note

As the mechanisms used to produce and consume secure messages are the same

for a paired and a grouped communication, the tables and other resources re-

quired may be shared for both paired and grouped communication.

However, when resources are shared, secure communication cannot be used at

the same time by a device that is both grouped and paired. If the application re-

15 Definitions and structures

quires that secure communication is possible at the same time for both paired

and grouped devices, then the keys and tables need to be duplicated, one set for

the paired communication and one set for the grouped communication.

16 CANcryptFD

4 CANcryptFD customizable functions

CANcryptFD uses a value in the range of 0–3 to select one of four security func-

tion levels as shown in the table below (selecting CANcryptFD methods and algo-

rithms).

Name Value Description

Basic 0 Minimal security level, requires minimal computational

resources, usable on most microcontrollers. Cryptographic

method used is the 64-bit Speck Cipher, optionally with

limited rounds. Protects from accidental misuse and simple

record and replay scenarios.

Regular 1 Default security level, adequate for all applications without

specific security requirements, suited for 32-bit microcon-

trollers. Cryptographic method used is the 64-bit XTEA

Cipher with full rounds.

Advanced 2 Highest security level. Uses a combination of XTEA-64 and

AES-128.

Custom 3 Allows customization of all security relevant functions.

SELECTING CANCRYPTFD DEFAULT METHODS AND ALGORITHMS

All elementary CANcryptFD functions that actively influence the security level are

located in the CANcrypt_userfct.h module. System developers can select either

one of the default settings or use their own customized configuration. In this

chapter we show the provided functions, for the default implementation of

ESAcademy’s commercial CANcryptFD release.

4.1 Collect random numbers

Both pairing and grouping functions collect random data from the participating

devices to initialize the secure communication. For the initial key generation,

CANcryptFD requires an array of random numbers that is as long as the current

key length. This function takes the collected initial random numbers and expands

them to fill the required array.

17 CANcryptFD customizable functions

/**

BOOK: Section 6.1 "Collect random numbers"

DOES: This function expands an array with a limited number of

 random bytes to an array of random bytes with the length

 of the current dynamic key.

RETURNS: nothing

**/

void Ccuser_ExpandRandom(

 UNSIGNED32 pkey[Cc_KEY_LEN32], // key input, length Cc_KEY_LEN32

 UNSIGNED32 pdest[Cc_KEY_LEN32], // destination: array with length

of dyn. key

 UNSIGNED32 psrc[12] // array with zeros and random num-

bers (3*15)

)

4.2 Bit mixup

The bit mixup function is used in basic and regular modes to generate the initial

dynamic key from the permanent key and to generate the dynamic one-time pad

from the current dynamic key. This CANcryptFD implementation uses variations of

the 32-bit and 64-bit Speck and XTEA Ciphesr. The number of rounds executed is

configurable.

/**

Macros to rotate 32bit value right or left and a single mix up round

in add-rotate-xor (ARX) style as used by Speck cipher

**/

#define ROR32(x,r) ((x >> (r & 0x1F)) | (x << (32 - (r & 0x1F))))

#define ROL32(x,l) ((x << (l & 0x1F)) | (x >> (32 - (l & 0x1F))))

#define MIXROUND32(a,b,k) (a=ROR32(a,8),a+=b,a^=k,b=ROL32(b,3),b^=a)

// extended CANcrypt version, create a disturbance in algorithm to

make it less predictable

// if you want to make use of such a feature, we recommend to use

your own, secret distortion

#define MIXROUND32x(a,b,k,j) (a=ROR32(a,9-

(j&3)),a+=b,a^=k,b=ROL32(b,1+(j&7)),b^=a)

/**

Rotation round of XTEA cipher

**/

#define MIXXTEA(d,s,k) ((((d << 4) ^ (d >> 5)) + d) ^ (s + k)

18 CANcryptFD

/**

BOOK: Section 6.2 "Bit mixup"

DOES: This function mixes the bits in a 64bit value by applying

 a Speck cipher. Used by key initialization functions and

 one-time pad generation.

MOTE: Recommended number of rounds is 27,

 USING LESS ROUNDS DECREASES RELIABILITY

RETURNS: Value pmixed[] returns the mixed bits

**/

void Ccuser_Mix64_SPECK(

 UNSIGNED32 pkey[Cc_KEY_LEN32], // key input 64 or 128 or 256bit

 UNSIGNED32 pdat[2], // data input of 64 bit

 UNSIGNED32 pmixed[2], // mixed bits output of 64 bit

 UNSIGNED8 rounds // number of mixing rounds to execute

);

/**

BOOK: Section 6.2 "Bit mixup"

DOES: This function mixes the bits in a 64bit value by applying

 a XTEA cipher. Used by key initialization functions and

 one-time pad generation.

MOTE: Recommended number of rounds is 64,

 USING LESS ROUNDS DECREASES RELIABILITY OF CIPHER

 Recommended key size 128bit,

 USING LESS ROUNDS DECREASES RELIABILITY OF CIPHER

RETURNS: Value pmixed[] returns the mixed bits

**/

void Ccuser_Mix64_XTEA(

 UNSIGNED32 pkey[Cc_KEY_LEN32], // key input 64 or 128 or 256bit

 UNSIGNED32 pdat[2], // data input of 64 bit

 UNSIGNED32 pmixed[2], // mixed bits output of 64 bit

 UNSIGNED8 rounds // number of mixing rounds to execute

);

/**

DOES: This function mixes the bits in a 128bit value

RETURNS: Value pmixed[] returns the mixed bits

**/

void Ccuser_Mix128(

 UNSIGNED32 pkey[Cc_KEY_LEN32], // key input

 UNSIGNED32 pdat[4], // data input of 128 bit

 UNSIGNED32 pmixed[4], // mixed bits output of 128 bit

 UNSIGNED8 rounds // number of mixing rounds to execute

 // ignored for AES

);

19 CANcryptFD customizable functions

4.3 Generate dynamic key

When a CANcryptFD system powers up it does not yet have a shared dynamic key,

only the stored permanent key. Initialization of the dynamic key depends on the

connection method. In both available methods the selected permanent key is

copied to the dynamic key and gets modified before its first use.

The same function is also used to update or re-generate the dynamic key in

grouping mode and to generate a one-time pad from the dynamic key.

The main idea behind this is that a permanent key should never be used directly

for any security functions, as that would provide an attack vector, therefore a

modified copy is used.

/**

BOOK: Section 6.3 "Generate keys"

DOES: Takes input from 2 keys and 1 factor to create a new key.

 Used to create a dynamic key from a permanent key using

 random input and a serial number.

 Used to create a one-time pad from a permanent and

 dynamic key and a counter.

RETURNS: TRUE if key initialization completed,

 FALSE if not possible due to parameters

**/

UNSIGNED8 Ccuser_MakeKey(

 UNSIGNED32 pin1[Cc_KEY_LEN32],// input 1: pointer to primary key

 UNSIGNED32 pin2[Cc_KEY_LEN32],// input 2: pointer to 2nd inputy

 UNSIGNED32 factor, // input 3: optional, set zero if not used

 // used for serial number, counter

 UNSIGNED32 pout[Cc_KEY_LEN32] // output: the dynamic key or one

time pad

);

4.3.1 Grouping: Take random values from grouping message

The messages used to initialize the grouping mode each contain a 24-bit random

value. These random values from all participating devices are used to initiate the

dynamic key before its initial use.

4.3.2 Generate one-time pad

The one-time pad is re-generated before every use of secure messages. An indi-

vidual message counter is part of the generation, ensuring that some value

changes with every use.

20 CANcryptFD

4.4 Updating the dynamic shared key

One of the core features of CANcryptFD is that the dynamic key is continuously

updated. The methods used differ between pairing and grouping.

4.4.1 Grouping: Key update based on secure heartbeat

In grouping mode, a secure heartbeat is produced.

Every secure heartbeat includes a counter and random, encrypted bytes. The

secure heartbeat happens in cycles, and within each cycle, all active participants

produce their heartbeats. All decrypted random values from all devices are used

to update the dynamic key. This key update uses the Ccuser_MakeKey() function

from section 4.3 to generate the dynamic key.

4.5 Secure Heartbeat and Messaging

All secure messages feature a CANcryptFD security record with a digital signature.

The signature covers the entire message, including CAN ID and all data bytes.

4.5.1 Generate signature

/**

BOOK: Section 6.5.1 "Generate signature value"

 CANCRYPT FD ADOPTED VERSION

 Modified for CANcrypt FD, signs entire CAN FD message

DOES: Generates a signature for a CAN FD message

RETURNS: TRUE, when generation success

**/

UNSIGNED8 Ccuser_MakeSignature(

 CAN_MSG *pCAN, // CAN FD message to generate signature for

 Cc_SECURITY_RECORD *pSec, // Security record, values pre-filled

 UNSIGNED32 pKey[Cc_KEY_LEN32], // key used for signature

 UNSIGNED32 pVec[Cc_KEY_LEN32] // key used for chksum init

);

4.5.2 Verify signature

/**

BOOK: Section 6.5.2 "Verify signature value"

 CANCRYPT FD ADOPTED VERSION

DOES: Verifies a signature received in a CAN FD message

RETURNS: TRUE, if signature was verified

**/

UNSIGNED8 Ccuser_VerifySignature(

 CAN_MSG *pCAN, // CAN FD message to generate signature for

 Cc_SECURITY_RECORD *pSec, // Security record, values pre-filled

 UNSIGNED32 pKey[Cc_KEY_LEN32], // key used for signature

 UNSIGNED32 pVec[Cc_KEY_LEN32] // key used for chksum init

);

21 CANcryptFD customizable functions

4.6 Encryption and decryption

Encryption algorithms are kept simple in CANcryptFD, the security effort is placed

into the dynamic keys and one-time pads.

4.6.1 Secure message encryption

When it comes to secure messaging, CANcryptFD ensures that these always are

made up of two CAN messages of eight bytes, providing a total data length of 128

bits. The first message is a preamble, the second the data message, with unused

bytes filled with random bytes. This potentially allows 128-bit algorithms to be

used if the entire message needs to be encrypted.

Per default, encryption is a single exclusive or with the current one-time pad. Only

the bytes specified get encrypted.

If AES-128 is used, consider using AES-128 to generate the one-time pad, then

data less than 128bit can be encrypted.

/**

BOOK: Section 6.7.1 "Secure message encryption"

DOES: Encrypts a data block in a secure message

NOTE: This version NOT optimized for 32 bit architecture

RETURNS: TRUE if encryption completed,

 FALSE if not possible due to parameters

**/

UNSIGNED8 Ccuser_Encrypt(

 UNSIGNED32 ppad[Cc_KEY_LEN32], // pointer to current one-time pad

 UNSIGNED32 *pdat, // pointer to the data to encrypt

 UNSIGNED16 first, // first byte to encrypt

 UNSIGNED16 bytes // number of bytes to encrypt

);

22 CANcryptFD

4.6.2 Secure message decryption

The decryption function uses the same parameters. If the encryption method is

fully symmetric, then the encrypt function can also be used for decrypt.

/**

BOOK: Section 6.7.2 "Secure message decryption"

NOTE: Only used if cryptographic function is not symmetric and

 decryption requires a different function then encryption

DOES: Decrypts a data block

RETURNS: TRUE if decryption completed,

 FALSE if not possible due to parameters

**/

UNSIGNED8 Ccuser_Decrypt(

 UNSIGNED32 ppad[Cc_KEY_LEN32], // pointer to current one-time pad

 UNSIGNED32 *pdat, // pointer to the data to decrypt

 UNSIGNED16 first, // first byte to decrypt

 UNSIGNED16 bytes // number of bytes to decrypt

);

23 CANcryptFD Programming

5 CANcryptFD Programming

The following diagram illustrates the simplified integration of CANcryptFD into

existing CAN systems. Integration happens at the driver level and thus is inde-

pendent from additional layers and the software using CAN communications.

Applications need only make a few function calls to activate the CANcryptFD secu-

rity system and to handle call backs from events reported by the CANcryptFD

security system.

SIMPLIFIED CANCRYPTFD INTEGRATION

5.1 C include files definitions

The example demo projects provided contain the C include/definition files used

for all major CANcryptFD definitions and settings.

5.1.1 CC_user_config.h

This module is used to configure the CANcryptFD operation mode, including the

selected methods and timeouts.

24 CANcryptFD

/**

MODULE: Cc_user_config.h, CANcrypt global user configuration

CONTAINS: Configuration parameters for CANcrypt

AUTHORS: Embedded Systems Academy, Inc (USA) and

 Embedded Systems Academy, GmbH (Germany)

HOME: https://www.cancrypt.net

LICENSE: See below, APPLIES TO THIS FILE ONLY.

 See individual file headers for applicable license.

 Licensed under the Apache License, Version 2.0 (the "License");

 you may not use this file except in compliance with the License.

 You may obtain a copy of the License at

 www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software

 distributed under the License is distributed on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

 implied. See the License for the specific language governing

 permissions and limitations under the License.

VERSION: 1.03, 06-AUG-2018

 $LastChangedRevision: 466 $

**/

#ifndef _CC_USER_CONFIG_H

#define _CC_USER_CONFIG_H

/**

CANcrypt code selection

**/

// If defined, implement grouping functionality

#define Cc_USE_GROUPING

// If defined, implement secure messaging

#define Cc_USE_SECURE_MSG

// If defined, switch output pins for performance measurements,

// as well as for debug and test

#define Cc_USE_DIGOUT

/**

Security CAN Functionality

Cc_SECFCT_BASIC 0x00

Cc_SECFCT_REGULAR 0x01

Cc_SECFCT_ADVANCED 0x02

Cc_SECFCT_CUSTOM 0x03

**/

#define Cc_FUNCTIONALITY Cc_SECFCT_REGULAR

/**

Permanent key length used by this version: 128, 256 or 512

Must be greater or equal to the dynamic key length

**/

25 CANcryptFD Programming

#define Cc_PERMKEY_LEN_BITS 256

#define Cc_PERMKEY_LEN32 (Cc_PERMKEY_LEN_BITS >> 5)

#define Cc_PERMKEY_LEN8 (Cc_PERMKEY_LEN_BITS >> 3)

// Default permanent key available

#define Cc_PERMKEY_DEFAULT Cc_PERM_KEY_USER

/**

Dynamic key length used by this version: 64 or 128

**/

#define Cc_KEY_LEN_BITS 128

#define Cc_KEY_LEN32 (Cc_KEY_LEN_BITS >> 5)

#define Cc_KEY_LEN16 (Cc_KEY_LEN_BITS >> 4)

#define Cc_KEY_LEN8 (Cc_KEY_LEN_BITS >> 3)

/**

Timings used

IN THIS VERSION, INDIVIDUAL TIMINGS MUST STILL BE SET BELOW

**/

#define Cc_TIMINGS Cc_TIMING_MEDIUM

/**

Secure heartbeat timings

**/

// Secure Heartbeat event time

#define Cc_SECHB_EVENT_TIME 500

// Secure Heartbeat inhibit time

#define Cc_SECHB_INHIBIT_TIME 250

// Secure Heartbeat timeout

#define Cc_SECHB_TIMEOUT 1000

// Message sequence counter increment value, ensure multiple bits

change

#define Cc_SEC_INC 0x0861

/**

Default key generation parameters

**/

// CANcrypt Method combination

#define Cc_METHOD (Cc_TIMINGS + \

 (((Cc_BITMETHOD + Cc_BITMETHOD_CLAIMS + Cc_FUNCTIONALITY) << 4)))

// Custom bit generation cycle timeout

#define Cc_CUST_BITCYC_TIMEOUT 20

// Custom bit generation max random delay time, 0 for immedi-

ate/direct

#define Cc_CUST_BITCYC_RANDTIME 0x0F

/**

Enable monitoring of unexpected CAN message IDs received.

**/

26 CANcryptFD

// Maximum number of CAN IDs in list monitored, 0 to disable

#define Cc_CANIDLIST_LEN 16

/**

CAN IDs used

**/

// CANcrypt messages for devices and configurator, plus next 15 IDs

#define Cc_CANID_CONFIG 0x0171

// Bit claiming messages start with this ID, plus next 1 or 15 IDs

#define Cc_CANID_BITBASE 0x06F0

// CANcrypt messages for debug messages, plus next 15 IDs

#define Cc_CANID_DEBUG 0x06E1

/**

Size of event queue for call backs (used from Rx thread)

Limit selection to 4 or 8

**/

#define Cc_CBEVENT_QUEUE 0x04

/**

DEFINES: CAN HARDWARE DRIVER DEFINITIONS

**/

// Tx FIFO depth (must be 0, 4, 8, 16 or 32)

#define TXFIFOSIZE 16

// Rx FIFO depth (must be 0, 4, 8, 16 or 32)

#define RXFIFOSIZE 16

5.1.2 CANcrypt_types.h

This definition file contains the main bit and type definitions for the CANcrypt

parameters, variables and configurations. See the file for details.

5.1.3 CANcrypt_api.h

This module contains the function definitions for actively controlling CANcrypt

from an application.

27 CANcryptFD Programming

CANcrypt system restart

The Cc_SelectGroup() function can be called BEFORE Cc_Restart() to pre-select the

key used for the next grouping process and to specify the group participants ex-

pected.

/**

DOES: Selects the next grouping event

 If none specified, last saved session key and group is used.

RETURNS: TRUE, if key availanle, else FALSE

**/

UNSIGNED8 Cc_SelectGroup(

 Cc_HANDLE *pCc, // pointer to CANcrypt handle record

 UNSIGNED8 key_major, // key ID major info (2-6)

 UNSIGNED8 key_minor, // key ID minor info (size in 32bits)

 UNSIGNED16 grp_exp , // Expected devices (bit 0 = unused,

 // bit 1 = Device1, bit 2 = Device 2, etc.)

 UNSIGNED16 grp_opt // Optional devices

);

The Cc_Restart() function is used to re-start the CANcrypt system. The entire han-

dle is erased and re-initialized. The parameters include the address (device ID)

and a control byte. Values for the control byte are defined as Cc_PAIR_CTRL_xxx

and Cc_GROUP_CTRL_xxx.

The function pointers passed are the generic event call back and the CAN transmit

functions used for this CANcrypt connection. The ”TxNow” is only required if the

“direct” key generation method is used.

The device identification string consists of 4 values of each 32bit and is adopted

from CANopen. The four values are a vendor ID, a product code, a revision num-

ber and a serial number. If you do not have a CANopen vendor ID, then set the

vendor ID field to zero.

/**

DOES: Re-start of the CANcrypt system.

RETURNS: TRUE, if completed

 FALSE, if error in parameters passed

**/

UNSIGNED8 Cc_Restart(

 Cc_HANDLE *pCc, // pointer to CANcrypt handle record

 UNSIGNED8 address, // address of this device, set to zero if

 // taken from config Ccnvol_GetGroupInfo()

 UNSIGNED32 control, // Bit0-1: 00: No change to pairing

 // 01: Restart pairing

 // 10: Stop pairing

 // Bit2-3: 00: No change to grouping

 // 01: Restart grouping

 // 10: Stop grouping

 // Call-back functions

 Cc_CB_EVENT fct_event, // change of status, alert

 Cc_CAN_PUSH fct_pushTxFIFO, // put CAN message into Tx FIFO

28 CANcryptFD

 Cc_CAN_PUSH fct_pushTxNOW, // transmit this CAN message now

 // Device identification

 UNSIGNED32 id_1018[4] // Vendor ID, product code, revision, serial

);

Identification

The two identification functions can also be used when devices are not yet paired

or grouped. Devices may deny access to some extended identification requests if

that data is only available when paired or grouped.

The application receives the responses through the generic event call back func-

tion passed on Cc_Restart() of the CANcrypt system.

/**

DOES: Generate an identify message.

RETURNS: nothing

**/

void Cc_TxIdentify(

 Cc_HANDLE *pCc, // pointer to CANcrypt handle record

 UNSIGNED16 version, // CANcrypt version

 UNSIGNED8 key_id, // key id desired

 UNSIGNED8 key_len, // key len desired

 UNSIGNED8 cc_method, // method desired (Cc_SECFCT_xxx)

 UNSIGNED8 cc_timing // timing desired (Cc_TIMING_xxx)

);

/**

DOES: Generates an extended identify message

RETURNS: nothing

**/

void Cc_TxXtdIdentify(

 Cc_HANDLE *pCc, // pter to a CANcrypt handle record

 UNSIGNED8 device, // device to send request to

 UNSIGNED16 index, // index to data

 UNSIGNED8 subindex // subindex to data

);

Closing a CANcrypt connection

The Cc_TxDisconnect() function can be used to end a paired or grouped connec-

tion. It informs the communication partner of the discontinuation of the connec-

tion and closes the CANcrypt secure communication channel.

/**

DOES: Disconnect from the CANcrypt communication partners,

 sends a request to end pairing / grouping.

RETURNS: nothing

**/

29 CANcryptFD Programming

void Cc_TxDisconnect(

 Cc_HANDLE *pCc, // pointer to CANcrypt handle record

 UNSIGNED8 dest_addr, // paired device ID (1-15) or 0 for group

 UNSIGNED8 reason // reason for disconnecting, event/aler code

);

Secure messaging

In order to use secure messaging, all nodes transmitting or receiving secure mes-
sages must have the secure message table implemented. The table is passed to
CANcrypt using the function Cc_Load_Sec_Msg_Table(). When grouped or paired,
Cc_Init_Sec_Msg_Table_Counter() must be called synchronized on all devices to
re-init the message counters.

#ifdef Cc_USE_SECURE_MSG

/**

DOES: Installs the secure message handlers by passing the

 appropriate secure message tables for transmit and receive.

RETURNS: TRUE, if completed

 FALSE, if error in parameters passed

**/

UNSIGNED8 Cc_Load_Sec_Msg_Table(

 Cc_HANDLE *pCc, // pointer to CANcrypt handle record

 Cc_SEC_MSG_TABLE_ENTRY *pMsgTblRx, // secure messages to receive

 Cc_SEC_MSG_TRACK_ENTRY *pMsgTrkRx, // variables for above

 Cc_SEC_MSG_TABLE_ENTRY *pMsgTblTx, // secure messages to receive

 UNSIGNED8 *pMsgTrkTcnt // counter for above

);

/**

DOES: Initialize the transmit and receive counters for the secure

 messages, may only be called "synchronized" for all

 paired / grouped devices, e.g. directly with pairing /

 grouping confirmation.

RETURNS: nothing

**/

void Cc_Init_Sec_Msg_Table_Counter(

 Cc_HANDLE *pCc // pointer to CANcrypt handle record

);

#endif

The function Cc_Process_secMsg_Rx() determines if a message received requires
security treatment. If a CANcrypt preamble is received, then it gets copied to a
buffer. Processing only continues if the data message belonging to the preamble
is received.

/**

DOES: This is the secure CAN Rx function of CANcrypt, needs to be

 called before a message received goes into receive FIFO.

RETURNS: 0: message ignored by CANcrypt, ADD TO FIFO

 1, message is a preamble, DO NOT ADD TO FIFO

 2, secure message, and it is secure, ADD TO FIFO

30 CANcryptFD

 3, message requires security, but we are not paired

 DO NOT ADD TO FIFO

**/

UNSIGNED8 Cc_Process_secMsg_Rx(

 Cc_HANDLE *pCc, // pointer to CANcrypt handle record

 CAN_MSG *pCANrx // pointer to CAN message received

);

The function Cc_Process_secMsg_Tx() must be called if a message to be transmit-
ted should be only transmitted as a secure message. If the message is in the list of
secure messages, then the CANcrypt system applies the security features and
generates the preamble for the message.

/**

DOES: This is the secure CAN transmit function of CANcrypt. It

 must be called before the transmit message is copied

 to the transmit FIFO, as a preamble might need to be

 inserted first.

RETURNS: 0: message ignored (not handled) by CANcrypt ADD TO FIFO

 1: message is secured by CANcrypt, ADD PREAMBLE&MSG TO FIFO

 2: message requires security, but we are not paired

 DO NOT ADD TO FIFO

**/

UNSIGNED8 Cc_Process_secMsg_Tx(

 Cc_HANDLE *pCc, // pointer to CANcrypt handle record

 CAN_MSG *preamble, // pointer to CAN buffer for preamble

 CAN_MSG *pCANtx // pointer to CAN message to transmit

);

Misc functions

The Cc_TxDisconnect() function can be used to end a paired or grouped connec-
tion. It informs the communication partner of the discontinuation of the connec

/**

DOES: Generate a response message of type acknowledge or abort.

RETURNS: nothing

**/

void Cc_TxAckAbort(

 Cc_HANDLE *pCc, // pointer to CANcrypt handle record

 UNSIGNED8 ack, // TRUE for Ack, FALSE for Abort

 UNSIGNED8 dest_addr, // destination device ID (1-15)

 // or 0 for broadcast

 UNSIGNED8 key_id, // key id for this acknowledge, 0 if unused

 UNSIGNED8 key_len // key len for this acknowledge, 0 if unused

);

/**

DOES: Generate an alert message.

RETURNS: nothing

**/

31 CANcryptFD Programming

void Cc_TxAlert(

 Cc_HANDLE *pCc, // pointer to CANcrypt handle record

 UNSIGNED8 dest_addr, // destination device ID (1-15)

 // or 0 for broadcast

 UNSIGNED16 alert // 16bit alert or error code

);

Cyclic processes

The function Cc_Process_Tick() needs to be called cyclically, preferably multiple

times per millisecond. If called less frequent or integrated in a Real-Time Operat-

ing System, the call should be

while (Cc_Process_Tick(pCc)
{
}

This ensures that it keeps processing as long as there are some CANcrypt tasks to

execute.

This function calls the sub-tasks of the CANcrypt system.

/**

DOES: Main CANcrypt householding functionality. Call cyclicly.

 Primarily monitors timeouts and satet transitions.

RETURNS: TRUE, if there was something to process

 FALSE, if there was nothing to do

**/

UNSIGNED8 Cc_Process_Tick(

 Cc_HANDLE *pCc // pointer to CANcrypt handle record

);

/**

Same as above, but for individual tasks within CANcrypt:

bit and key generation process, pairing, grouping, monitoring

**/

UNSIGNED8 Cc_Process_Key_Tick(Cc_HANDLE *pCc);

UNSIGNED8 Cc_Process_Pair_Tick(Cc_HANDLE *pCc);

UNSIGNED8 Cc_Process_Group_Tick(Cc_HANDLE *pCc);

UNSIGNED8 Cc_Process_secMsg_Tick(Cc_HANDLE *pCc);

UNSIGNED8 Cc_Process_Monitor_Tick(Cc_HANDLE *pCc);

CAN receive triggered processes

The Cc_Process_Rx() function needs to be called directly from the CAN receive

interrupt. From here, an incoming message is distributed to the appropriate sub-

system.

32 CANcryptFD

At the end, TRUE is returned, if this message should not be passed on to the ap-

plication. In this case, the driver/interrupt has to dismiss/ignore it.

/**

DOES: This is the main CAN receive function of CANcrypt, must be

 called directly from CAN receive interrupt. Distributes a

 message to the other Cc_Process_xxx_Rx() functions.

RETURNS: TRUE, if this message was processed by CANcrypt

 FALSE, if this message was ignored by CANcrypt

**/

UNSIGNED8 Cc_Process_Rx(

 Cc_HANDLE *pCc, // pointer to CANcrypt handle record

 CAN_MSG *pCANrx // pointer to CAN message received

);

/**

Same as above, but for individual tasks within CANcrypt:

bit and key generation process, pairing, grouping, monitoring

**/

UNSIGNED8 Cc_Process_Key_Rx(Cc_HANDLE *pCc, CAN_MSG *pCANrx);

UNSIGNED8 Cc_Process_Pair_Rx(Cc_HANDLE *pCc, CAN_MSG *pCANrx);

UNSIGNED8 Cc_Process_Group_Rx(Cc_HANDLE *pCc, CAN_MSG *pCANrx);

UNSIGNED8 Cc_Process_Monitor_Rx(Cc_HANDLE *pCc, CAN_MSG *pCANrx);

5.2 Low-level driver interfacing

CANcrypt requires access to the following system resources:

1.) The CAN communication interface
2.) A one Millisecond timer
3.) Non-volatile memory for storage of configuration and keys

This chapter describes the detailed requirements for these interfaces.

5.2.1 CAN interface access

To simplify required code changes to existing implementations, the programming

interface provides hooks to typical CAN driver processing functions. Several func-

tions that are time critical typically need to be integrated at the lowest driver

level, directly in the CAN receive interrupt routine. When integrated at this level,

the changes to the user or application level are minimal.

The diagram below illustrates a typical CAN driver with FIFOs (First-In, First-Out

buffers). A CAN interrupt service routine copies received CAN messages into a

receive FIFO. The messages are processed later by a protocol stack (such as CAN-

open) or directly by the application. Messages transmitted by the application or

33 CANcryptFD Programming

protocol stack are added to a transmit FIFO and from there go into a CAN control-

ler transmit buffer.

TYPICAL FIFO CAN DRIVER

CANcrypt functions can be fully integrated into this scheme, minimizing the im-

pact on the application or the protocol stack.

Once the CANcrypt system is integrated and active (paired device found), no

changes are required in regard to receiving CAN messages. The CANcrypt receive

handler (CANcrypt process Rx) is integrated into the CAN receive interrupt han-

dler and copies received secure messages only after they have been authenticat-

ed and decrypted.

34 CANcryptFD

FUNCTION “HOOKS” BETWEEN CANCRYPT AND DRIVER

In regard to transmission of secure messages, the application or protocol stack

can add unsecured messages to the transmit FIFOs in the same manner as with-

out CANcrypt. However, for a secure transmission, CANcrypt generates the ap-

propriate preamble and encrypted message.

If used with the option for the fastest bit-generation cycle (direct response to

trigger, not random delay), a dedicated CAN transmit buffer (CAN Tx buffer 2 in

figure above) is required.

The background handler (process tick) manages the pairing of devices and updat-

ing the dynamic key.

Moving CAN messages

In CANcrypt a CAN message is defined as a structure of the CAN ID (data type of

16 bits or 32 bits depending if CAN is used with 11-bit or 29-bit CAN message

identifiers), the data length and the data. This is a common definition used by

many drivers.

35 CANcryptFD Programming

When a CAN message is passed on to a FIFO or another handler, then the parame-

ters passed are only a pointer to the CAN message structure and the value re-

turned is a Boolean. The return value is TRUE, if the message was passed on with-

out errors.

/**
DOES: Function to pass on a CAN message to a buffer
RETURNS: TRUE, if message was accepted
 FALSE, if message could not be processed
**/
typedef UNSIGNED8 (*Cc_CAN_PUSH) (
 CAN_MSG *pCAN // CAN message to transfer
);

When initializing CANcrypt via the Cc_Restart() function, a total of two such driver

functions need to be passed on to CANcrypt. These are:

fct_pushTxFIFO

This function places the CAN message passed into the regular transmit

FIFO/queue. If there are already messages in this transmit FIFO it will go out after

all the messages in the FIFO went out.

fct_pushTxNOW

This function bypasses the transmit FIFO and directly places this CAN message

into a CAN transmit buffer of the CAN controller.

Function currently NOT used by CANcryptFD!

36 CANcryptFD

5.2.2 Random numbers, timer and timeout

CANcrypt uses timings based on milliseconds. Only two functions are required.

/**
MODULE: CANcrypt_hwsys.h, Misc HW system functions
CONTAINS: Random number generation and timers
AUTHOR: 2017 Embedded Systems Academy, GmbH
HOME: www.esacademy.com/cancrypt

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at
 www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied. See the License for the specific language governing
 permissions and limitations under the License.

VERSION: 0.10, 19-JAN-2017
**/

#ifndef _CANCRYPT_HWSYS_H
#define _CANCRYPT_HWSYS_H

#include "Cc_user_types.h"

/**
DOES: Generates a random value.
NOTE: Must be suitable for security use, shall not produce the
 same sequence of numbers on every reset or power up!!
RETURNS: Random value
**/
INTEGER32 CCHW_Rand(
 void
);

/**
DOES: This function reads a 1 millisecond timer tick. The timer
 tick must be a UNSIGNED16 and must be incremented once per
 millisecond.
RETURNS: 1 millisecond timer tick
**/
UNSIGNED16 CCHW_GetTime (
 void
);

37 CANcryptFD Programming

/**
DOES: This function compares a UNSIGNED16 timestamp to the
 internal timer tick and returns 1 if the timestamp
 expired/passed.
RETURNS: 1 if timestamp expired/passed
 0 if timestamp is not yet reached
NOTES: The maximum timer runtime measurable is 0x7FFF
**/
UNSIGNED8 CCHW_IsTimeExpired (
 UNSIGNED16 timestamp // Timestamp to be checked for expiration
);

#endif
/*----------------------- END OF FILE -----------------------------*/

38 CANcryptFD

5.2.3 Non-Volatile memory access

Non-volatile memory, like EEPROM, is needed to store keys and configurations. If

a system is hard-coded, these parameters could also all be stored in code memory

area.

/**
MODULE: CANcrypt_nvol.h, access to non volatile memory
CONTAINS: Functions that access data stored in NVOL memory
AUTHOR: 2017 Embedded Systems Academy, GmbH
HOME: www.esacademy.com/cancrypt

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at
 www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied. See the License for the specific language governing
 permissions and limitations under the License.

VERSION: 0.10, 19-JAN-2017
**/

#ifndef _CANCRYPT_NVOL_H
#define _CANCRYPT_NVOL_H

#include "CANcrypt_types.h"

/**
DOES: This function saves the current grouping parameters
RETURNS: TRUE, if saved, FALSE if failed
**/
UNSIGNED8 Ccnvol_SaveGroupInfo(
 UNSIGNED8 my_addr, // address (1-15) to use by this device
 UNSIGNED16 grp_info // bits 1-15 set for each device in group
 // bit 0 set if grouping is disabled
);

Key hierarchy access

These functions provide access to the key hierarchy. Erase or save commands are

only called by CANcrypt, if a request with the appropriate authorization has been

received.

/**
BOOK: Section 6.1 "Key hierarchy access"
DOES: This function directly returns a key from the key hierarchy
RETURNS: Pointer to the key or NULL if not available
**/

39 CANcryptFD Programming

UNSIGNED32 *Ccnvol_GetPermKey(
 UNSIGNED8 key_ID // key major ID, 2 to 6
);

/**
BOOK: Section 6.1 "Key hierarchy access"
DOES: This function erases a key from the key hierarchy. Will only
 be called from CANcrypt, if called from authorized
 configurator.
RETURNS: TRUE, if key was erased, else FALSE
**/
UNSIGNED8 *Ccnvol_ErasePermKey(
 UNSIGNED8 key_ID // key major ID, 2 to 6
);

/**
BOOK: Section 6.1 "Key hierarchy access"
DOES: This function saves a key to the key hierarchy. Will only
 be called from CANcrypt, if called from authorized
 configurator.
RETURNS: TRUE, if key was erased, else FALSE
**/
UNSIGNED8 *Ccnvol_SavePermKey(
 UNSIGNED8 key_ID, // key major ID, 2 to 6
 UNSIGNED32 *pkey // pointer to key data
);

#endif
/*----------------------- END OF FILE -----------------------------*/

5.3 Secure message configuration

The secure message list record is defined in CANcrypt_types.h.

/**
Book section 5.4 "CANcrypt secure message table"
**/
typedef struct {
 COBID_TYPE CAN_ID; // CAN message ID of the secure message
 UNSIGNED8 EncryptFirst; // first byte to encrypt
 UNSIGNED8 EncryptLen; // number of bytes to encrypt
 UNSIGNED8 FunctMethod; // function and methods
 UNSIGNED8 Producer; // address (1-15) of the producer
} Cc_SEC_MSG_TABLE_ENTRY;

The application needs to provide two arrays with these records, one array with

the secure messages to receive, and one with the secure messages to transmit.

The last entry in the list needs to be all values FFh to indicate the end of the table.

40 CANcryptFD

The example below shows lists with two secure transmit messages and three

secure receive messages.

// secure message table for transmit
Cc_SEC_MSG_TABLE_ENTRY TxSecMg[3] = {
 0x0183, 2, 4, 0, 3,
 0x0283, 0, 6, 0, 3,
 0xFFFF, 0xFF, 0xFF, 0xFF, 0xFF
};

// secure message table for receive
Cc_SEC_MSG_TABLE_ENTRY RxSecMg[4] = {
 0x0181, 2, 4, 0, 1,
 0x0182, 2, 4, 0, 1,
 0x0281, 0, 6, 0, 1,
 0xFFFF, 0xFF, 0xFF, 0xFF, 0xFF
};

When passing these lists on to CANcrypt via the Cc_Load_Sec_Msg_Table() func-

tion, CANcrypt also requires lists with state tracking information. For the example

above they can be allocated as follows:

// secure message tracking info required by CANcrypt
UNSIGNED8 TxTrk[2];
Cc_SEC_MSG_TRACK_ENTRY RxTrk[3];

The call to activate the lists above is:

Cc_Load_Sec_Msg_Table(&CcH,RxSecMg,RxTrk,TxSecMg,TxTrk);

41 CANcryptFD Programming

5.4 Driver implementation

The CAN blocks on various microcontrollers may be quite different. This section

shows implementation details for the NXP LPC54618 microcontroller.

5.4.1 CAN queue / FIFO

Often a CAN software FIFO buffer (first-in-first-out) queue is used as a hardware

abstraction layer. If an application uses the same FIFO on different target micro-

controllers, than it can be independent from the various differences of the CAN

controllers. This sections shows the simple implementation of a CAN receive and

transmit FIFO.

There are separate FIFOs for transmit and receive. The functions for each FIFO are

a flush (erase), getting the current “in” or “out” pointers and a “done” call when

data was copied. See the next chapter for a usage example.

/**
MODULE: canfifo.c, CAN FIFO demo - message queues
CONTAINS: CAN transmit and receive FIFO
COPYRIGHT: Embedded Systems Academy GmbH, 2016-2017
HOME: www.esacademy.com/cancrypt
LICENSE: FOR EDUCATIONAL AND EVALUATION PURPOSE ONLY!
CONTACT: Contact info@esacademy.de for other available licenses

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.

VERSION: 0.10, 19-JAN-2017
**/

#include "CANcrypt_includes.h"

#if (TXFIFOSIZE != 0) && (TXFIFOSIZE != 4) && (TXFIFOSIZE != 8) &&
(TXFIFOSIZE != 16) && (TXFIFOSIZE != 32) && (TXFIFOSIZE != 64)
 #error "TXFIFOSIZE must be 0 (deactivated), 4, 8, 16, 32 or 64"
#endif
#if (RXFIFOSIZE != 0) && (RXFIFOSIZE != 4) && (RXFIFOSIZE != 8) &&
(RXFIFOSIZE != 16) && (RXFIFOSIZE != 32) && (RXFIFOSIZE != 64)
 #error "RXFIFOSIZE must be 0 (deactivated), 4, 8, 16, 32 or 64"
#endif

/**
MODULE VARIABLES
**/

42 CANcryptFD

typedef struct
{
#if (TXFIFOSIZE > 0)
 CAN_MSG TxFifo[TXFIFOSIZE];
#endif
#if (RXFIFOSIZE > 0)
 CAN_MSG RxFifo[RXFIFOSIZE];
#endif
#if (TXFIFOSIZE > 0)
 UNSIGNED8 TxIn;
 UNSIGNED8 TxOut;
#endif
#if (RXFIFOSIZE > 0)
 UNSIGNED8 RxIn;
 UNSIGNED8 RxOut;
#endif
} CANFIFOINFO;

// Module variable with all FIFO information
CANFIFOINFO mCF;

/**
PUBLIC FUNCTIONS
**/

Transmit FIFO / queue
#if (TXFIFOSIZE > 0)
/**
DOES: Flushes / clears the TXFIFO, all data stored in FIFO is lost
RETURNS: nothing
**/
void CANTXFIFO_Flush (
 void
)
{
 mCF.TxIn = 0;
 mCF.TxOut = 0;
}

/**
DOES: Returns a CAN message pointer to the next free location in
 the FIFO. The application may then copy a CAN message to the
 location given by the pointer and MUST call
 CANTXFIFO_InDone() when copy completed.
RETURNS: CAN message pointer into FIFO
 NULL if FIFO is full
**/

43 CANcryptFD Programming

CAN_MSG *CANTXFIFO_GetInPtr (
 void
)
{
UNSIGNED8 ovr; // check if FIFO is full

 ovr = mCF.TxIn + 1;
 ovr &= (TXFIFOSIZE-1);

 if (ovr != mCF.TxOut)
 {// FIFO is not full
 return &(mCF.TxFifo[mCF.TxIn]);
 }
 return 0;
}

/**
DOES: Must be called by the application after data was copied into
 the FIFO, this increments the internal IN pointer to the
 next free location in the FIFO.
RETURNS: nothing
**/
void CANTXFIFO_InDone (
 void
)
{
 // Increment IN pointer
 mCF.TxIn++;
 mCF.TxIn &= (TXFIFOSIZE-1);
}

/**
DOES: Returns a CAN message pointer to the next OUT message in the
 FIFO. The application may then copy the CAN message from the
 location given by the pointer to the desired destination and
 MUST call CANTXFIFO_OutDone() when done.
RETURNS: CAN message pointer into FIFO
 NULL if FIFO is empty
**/
CAN_MSG *CANTXFIFO_GetOutPtr (
 void
)
{
 if (mCF.TxIn != mCF.TxOut)
 { // message available in FIFO
 return &(mCF.TxFifo[mCF.TxOut]);
 }
 return 0;
}

44 CANcryptFD

/**
DOES: Must be called by application after data was copied from the
 FIFO, this increments the internal OUT pointer to the next
 location in the FIFO.
RETURNS: nothing
**/

void CANTXFIFO_OutDone (

 void
)
{
 mCF.TxOut++;
 mCF.TxOut &= (TXFIFOSIZE-1);
}
#endif // (TXFIFOSIZE > 0)

Receive FIFO / queue
#if (RXFIFOSIZE > 0)
/**
DOES: Flushes / clears the RXFIFO, all data stored in FIFO is lost
RETRUNS: nothing
**/
void CANRXFIFO_Flush (
 void
)
{
 mCF.RxIn = 0;
 mCF.RxOut = 0;
}

/**
DOES: Returns a CAN message pointer to the next free location in
 the FIFO. The application may then copy a CAN message to the
 location given by the pointer and MUST call
 CANRXFIFO_InDone() when copy completed.
RETURNS: CAN message pointer into FIFO, NULL if FIFO is full
**/
CAN_MSG *CANRXFIFO_GetInPtr (
 void
)
{
UNSIGNED8 ovr; // check if FIFO is full

 ovr = mCF.RxIn + 1;
 ovr &= (RXFIFOSIZE-1);

 if (ovr != mCF.RxOut)
 {// FIFO is not full
 return &(mCF.RxFifo[mCF.RxIn]);
 }
 return 0;
}

45 CANcryptFD Programming

/**
DOES: Must be called by the application after the data was copied
 into the FIFO, this increments the internal IN pointer to
 the next free location in the FIFO.
RETURNS: nothing
**/

void CANRXFIFO_InDone (
 void
)
{
 // Increment IN pointer
 mCF.RxIn++;
 mCF.RxIn &= (RXFIFOSIZE-1);
}

/**
DOES: Returns a CAN message pointer to the next OUT message in the
 FIFO. The application may then copy the CAN message from the
 location given by the pointer to the desired destination and
 MUST call CANRXFIFO_OutDone() when done.
RETURNS: CAN message pointer into FIFO, NULL if FIFO is empty
**/
CAN_MSG *CANRXFIFO_GetOutPtr (
 void
)
{
 if (mCF.RxIn != mCF.RxOut)
 { // message available in FIFO
 return &(mCF.RxFifo[mCF.RxOut]);
 }
 return 0;
}

/**
DOES: Must be called by application after data was copied from the FIFO,
 this increments the internal OUT pointer to the next location
 in the FIFO.
RETURNS: nothing
**/
void CANRXFIFO_OutDone (
 void
)
{
 mCF.RxOut++;
 mCF.RxOut &= (RXFIFOSIZE-1);
}
#endif // (RXFIFOSIZE > 0)

/*----------------------- END OF FILE -----------------------------*/

46 CANcryptFD

5.5 Grouping Demo

The grouping demo uses 3 devices with the device IDs 2, 3 and 7.

The messages chosen to mimic a CANopen style behavior with bootup, heart-

beats, emergencies and process data objects.

The secure messaging system is enabled for one transmit message of each device

using CAN IDs 182h, 183h and 187h (default IDs used for CANopen Transmit PDO).

Messages contain a mixture of fixed data as well as a counter. The message 187h

varies its length to include various parts of a fixed string "Plain text part, not

changing.".

All devices are configured to receive the two secure PDO messages from the other

two devices. In debugging mode, the echo the received data unencrypted using

CAN IDs 2xxh and 3xxh to reveal the unencrypted data.

This demo does not make use of true NVOL memory storage for keys, instead they

are stored in RAM. Keys are only stored until next reset or power cycle.

First initialization uses:

Cc_SelectGroup(&CcH,Cc_PERM_KEY_SESSION+Cc_GRPKEY_GENERATE,Cc_PERMKEY

_LEN32,0x008C,0x008C); // 2,3,7

Cc_Restart(&CcH,Cc_DEVICE_ID,Cc_GROUP_CTRL_RESTART,Cccb_Event,CCHW_Pu

shMessage,NULL,my_ident);

The setting “Cc_GRPKEY_GENERATE” requests that a new grouping session key is

generated.

Note that no special functions are used for transmit/receive of the secure mes-

sages. The CANcrypt system is hooked into the transmit/receive FIFO and detects

and handles secure messages without any extra intervention by the application.

After a random delay of a bout 30s, one of the grouped nodes will initiate a dis-

connect with save of the current session key. All devices save the session key and

after a delay re-group based on the last saved session key.

